
Agilent IO Libraries Suite

Agilent E2094N
Agilent VISA User’s Guide
Agilent Technologies

Notices
© Agilent Technologies, Inc. 1995-1996,
1998, 2000-2004

No part of this manual may be reproduced in
any form or by any means (including elec-
tronic storage and retrieval or translation
into a foreign language) without prior agree-
ment and written consent from Agilent
Technologies, Inc. as governed by United
States and international copyright laws.

Edition
Seventh edition, October 2004

Agilent Technologies, Inc.
815 14th Street SW
Loveland, CO 80537 USA

Trademark Information
Visual Studio is a registered trademark of

Warranty
The material contained in this docu-
ment is provided “as is,” and is sub-
ject to being changed, without notice,
in future editions. Further, to the max-
imum extent permitted by applicable
law, Agilent disclaims all warranties,
either express or implied, with regard
to this manual and any information
contained herein, including but not
limited to the implied warranties of
merchantability and fitness for a par-
ticular purpose. Agilent shall not be
liable for errors or for incidental or
consequential damages in connec-
tion with the furnishing, use, or per-
formance of this document or of any
information contained herein. Should
Agilent and the user have a separate
written agreement with warranty
terms covering the material in this
document that conflict with these
terms, the warranty terms in the sep-
arate agreement shall control.

Technology Licenses
The hardware and/or software described in
this document are furnished under a license
and may be used or copied only in accor-
dance with the terms of such license.

Restricted Rights Legend
If software is for use in the performance of a
U.S. Government prime contract or subcon-
tract, Software is delivered and licensed as
“Commercial computer software” as
defined in DFAR 252.227-7014 (June 1995),
or as a “commercial item” as defined in FAR
2.101(a) or as “Restricted computer soft-
ware” as defined in FAR 52.227-19 (June
1987) or any equivalent agency regulation or
contract clause. Use, duplication or disclo-
sure of Software is subject to Agilent Tech-
nologies’ standard commercial license
terms, and non-DOD Departments and
Agencies of the U.S. Government will
receive no greater than Restricted Rights as
defined in FAR 52.227-19(c)(1-2) (June

1987). U.S. Government users will receive
no greater than Limited Rights as defined in
FAR 52.227-14 (June 1987) or DFAR
252.227-7015 (b)(2) (November 1995), as
applicable in any technical data.

Safety Notices

CAUTION

A CAUTION notice denotes a haz-
ard. It calls attention to an operat-
ing procedure, practice, or the like
that, if not correctly performed or
adhered to, could result in damage
to the product or loss of important
data. Do not proceed beyond a
CAUTION notice until the indicated
conditions are fully understood and
met.

WARNING

A WARNING notice denotes a
hazard. It calls attention to an
operating procedure, practice, or
the like that, if not correctly per-
formed or adhered to, could result
in personal injury or death. Do not
proceed beyond a WARNING
notice until the indicated condi-
tions are fully understood and
met.
Microsoft Corporation in the United States
and other countries.

Windows NT is a U.S. registered trademark
of Microsoft Corporation.

Windows and MS Windows are U.S. regis-
tered trademarks of Microsoft Corporation.

Software Revision
This guide is valid for Revisions 14.xx of the
Agilent IO Libraries Suite software, where
xx refers to minor revisions of the software
that do not affect the technical accuracy of
this guide.
2 Agilent VISA User’s Guide

Agilent VISA User’s Guide

1 Introduction
Agilent VISA User’s Guide
What’s in This Guide? 8

VISA Overview 9

Using VISA, VISA COM, and SICL 9
VISA Support 10
VISA Documentation 10

Contacting Agilent 12
2 Building a VISA Application in Windows
Building a VISA Program (C/C++) 14

Compiling and Linking VISA Programs (C/C++) 14
Sample VISA Program (C/C++) 15

Building a VISA Program (Visual Basic) 18

Visual Basic Programming Considerations 18
Sample VISA Program (Visual Basic) 20

Logging Error Messages 25

Using the Event Viewer 25
Using the Message Viewer 25
Using the Debug Window 26
3 Programming with VISA
VISA Resources and Attributes 28

VISA Resources 28
VISA Attributes 29

Using Sessions 31

Including the VISA Declarations File (C/C++) 31
Adding the visa32.bas File (Visual Basic) 31
Opening a Session 32
3

4

Addressing a Session 34
Closing a Session 38
Searching for Resources 38

Sending I/O Commands 41

Types of I/O 41
Using Formatted I/O 41
Using Non-Formatted I/O 52

Using Events and Handlers 55

Events and Attributes 55
Using the Callback Method 63
Using the Queuing Method 72

Trapping Errors 78

Trapping Errors 78
Exception Events 80

Using Locks 85

Lock Functions 85
viLock/viUnlock Functions 85
VISA Lock Types 86
4 Programming via GPIB and VXI
GPIB and VXI Interfaces Overview 92

General Interface Information 92
GPIB Interfaces Overview 93
VXI Interfaces Overview 96
GPIB-VXI Interfaces Overview 97

Using High-Level Memory Functions 100

Programming the Registers 100
High-Level Memory Functions: Sample Programs 103

Using Low-Level Memory Functions 106

Programming the Registers 106
Agilent VISA User’s Guide

Agilent VISA User’s Guide
Low-Level Memory Functions: Code Samples 109

Using Low/High-Level Memory I/O Methods 113

Using Low-Level viPeek/viPoke 113
Using High-Level viIn/viOut 114
Using High-Level viMoveIn/viMoveOut 114

Using the Memory Access Resource 119

Memory I/O Services 119
MEMACC Attribute Descriptions 122

Using VXI-Specific Attributes 126

Using the Map Address as a Pointer 126
Setting the VXI Trigger Line 127
5 Programming via LAN
LAN and Remote Interfaces Overview 130

Direct LAN Connection versus Remote IO Server/Client
Connection 130

Remote IO Server/Client Architecture 130

Addressing LAN-Connected Devices 133

Using the TCPIP Interface Type for LAN Access 133
Using a Remote Interface for LAN Access 135
6 Programming via USB
USB Interfaces Overview 140

Communicating with a USB Instrument Using VISA 141
Glossary
5

6 Agilent VISA User’s Guide

Agilent IO Libraries Suite
Agilent VISA User’s Guide
1
Introduction

This Agilent VISA User’s Guide describes the Agilent Virtual
Instrument Software Architecture (VISA) library and shows
how to use it to develop I/O applications and instrument
drivers on Windows PCs.
NOTE Before you can use VISA, you must install and configure VISA on your
computer. See the Agilent IO Libraries Suite Getting Started for installation
on Windows systems.

Note that using VISA functions and SICL functions in the same I/O
application is not supported.
This chapter includes:

• What’s In This Guide?

• VISA Overview

• Contacting Agilent
7Agilent Technologies

1 Introduction
What’s in This Guide?
8

This guide shows VISA programming techniques using C/C++
and Visual Basic. This chapter provides an overview of VISA
and shows how to contact Agilent Technologies. Subsequent
chapters in this guide address the following topics:

• Chapter 2 - Building a VISA Application in Windows
describes how to build a VISA application in a Windows
environment. A sample program is provided to help you
get started programming with VISA.

• Chapter 3 - Programming with VISA describes the basics
of VISA and lists some sample programs. The chapter also
includes information on creating sessions, using formatted
I/O, events, etc.

• Chapter 4 - Programming via GPIB and VXI provides
guidelines for using VISA to communicate over the GPIB,
GPIB- VXI, and VXI interfaces to instruments.

• Chapter 5 - Programming via LAN provides guidelines
for using VISA to communicate over a LAN (Local Area
Network) to instruments.

• Chapter 6 - Programming via USB provides guidelines
for using VISA to communicate over a USB (Universal
Serial Bus) to instruments.

• Glossary includes a glossary of terms and their
definitions.

See “VISA Documentation" on page 10 for other sources of
information on VISA programming.
Agilent VISA User’s Guide

Introduction 1
VISA Overview
Agilent VISA User’s Guide
VISA is an application programming interface (API) for
instrument control. It allows you to programmatically send
commands and receive data from instruments and other test
and measurement devices (such as sources and switches).

VISA is a part of the Agilent IO Libraries Suite product. The
Agilent IO Libraries Suite includes three libraries: Agilent
Virtual Instrument Software Architecture (VISA), VISA for
the Common Object Model (VISA COM), and Agilent
Standard Instrument Control Library (SICL). This guide
describes Agilent VISA for supported Windows environments.

For information on VISA COM, see the online Help on
VISA COM, available by clicking the blue IO Control icon on
your screen (if you have installed Agilent IO Libraries Suite).
For information on using SICL in Windows, see the Agilent
SICL User’s Guide for Windows. For information on Agilent
IO Libraries Suite, see the Agilent IO Libraries Suite
Getting Started Guide and the Agilent IO Libraries Suite
Online Help.
Using VISA, VISA COM, and SICL
Agilent Virtual Instrument Software Architecture (VISA) is
an I/O library designed according to the VXIplug&play
System Alliance that allows software developed from
different vendors to run on the same system.

If you are using new instruments or are developing new I/O
applications or instrument drivers, and you have chosen to
use direct I/O rather than instrument drivers, we
recommend you use Agilent VISA or VISA COM. See the
Agilent IO Libraries Suite Online Help for an in- depth
discussion of your programming options.

Agilent Standard Instrument Control Library (SICL) is an
I/O library developed by Agilent that is portable across
many I/O interfaces and systems. You can use Agilent SICL
if you have been using SICL and want to remain compatible
with software currently implemented in SICL.
9

1 Introduction
VISA Support
10
This 32- bit version of VISA is supported on Windows 98SE,
Windows Me, Windows 2000, and Windows XP. (For
information on 16- bit VISA support, and support of older
operating systems, see the revision history information in
the Agilent IO Libraries Suite Online Help.) C, C++, and
Visual Basic are supported on all these Windows versions.
C# and Visual Basic .NET are also supported via the
visa32.cs and visa32.vb header files that are included
with the Agilent VISA library.

For Windows, VISA is supported on the GPIB, VXI,
GPIB- VXI, Serial (RS- 232), LAN, and USB interfaces. LAN
support from within VISA occurs via an address translation
such that a GPIB interface can be accessed remotely over a
computer network.

Agilent VISA provides support for version 3.0 of the VISA
specification.
VISA Documentation
This table shows associated documentation you can use
when programming with Agilent VISA.

Table 1 Agilent VISA Documentation

Document Description

Agilent IO Libraries Suite Getting
Started Guide

Shows how to install, configure, and
maintain Agilent IO Libraries Suite.

VISA Online Help A function reference and other
programming information is provided in the
form of Windows Help.

VISA Sample Programs Sample programs are provided online to
help you develop VISA applications.

VXIplug&play System Alliance
VISA Library Specification 4.3

Specifications for VISA.
Agilent VISA User’s Guide

Introduction 1

Agilent VISA User’s Guide
IEEE Standard Codes, Formats,
Protocols, and Common
Commands

ANSI/IEEE Standard 488.2-1992.

VXIbus Consortium specifications
(when using VISA over LAN)

TCP/IP Instrument Protocol Specification -
VXI-11, Rev. 1.0
TCP/IP-VXIbus Interface Specification -
VXI-11.1, Rev. 1.0
TCP/IP-IEEE 488.1 Interface Specification -
VXI-11.2, Rev. 1.0
TCP/IP-IEEE 488.2 Instrument Interface
Specification - VXI-11.3, Rev. 1.0

Table 1 Agilent VISA Documentation
11

1 Introduction
Contacting Agilent
12
• In the USA, you can reach Agilent Technologies by
telephone at:

USA: 1- 800- 829- 4444

• Outside the USA, contact your country’s Agilent support
organization. A list of contact information for other
countries is available on the Agilent Web site:

http://www.agilent.com/find/assist

• The Agilent Developer Network (ADN),

http://www.agilent.com/find/adn

is a one- stop web resource that supports your
connectivity needs with software downloads, sample code,
technical notes and white papers.
Agilent VISA User’s Guide

http://www.agilent.com/find/assist
http://www.agilent.com/find/assist

Agilent IO Libraries Suite
Agilent VISA User’s Guide
2
Building a VISA Application in
Windows

This chapter provides guidelines for building a VISA
application in a Windows environment.

The chapter contains the following sections:

• Building a VISA Program (C/C++)

• Building a VISA Program (Visual Basic)

• Logging Error Messages

For information on building a VISA application in Visual
Studio .NET, see the VISA Online Help.
13Agilent Technologies

2 Building a VISA Application in Windows
Building a VISA Program (C/C++)
14
This section provides guidelines for building VISA programs
using C/C++ language, including:

• Compiling and Linking VISA Programs (C/C++)

• Sample VISA Program (C/C++)
Compiling and Linking VISA Programs (C/C++)
This section provides a summary of important
compiler- specific considerations for several C/C++ compiler
products when developing Win32 applications.

Linking to VISA Libraries

Your application must link to one of the VISA import
libraries as follows, assuming default installation directories
and Microsoft compilers.

VISA on Windows 2000 or Windows XP:

 C:\Program Files\VISA\winnt\lib\msc\visa32.lib

VISA on Windows 98SE or Windows Me:

 C:\Program Files\VISA\win95\lib\msc\visa32.lib

Microsoft Visual C++ Version 6.0 Compilers

1 Select Project > Settings from the menu and click the
C/C++ tab.

2 Select Code Generation from the Category list box and select
Multi-Threaded using DLL from the Use Run-Time Libraries list
box. (VISA requires these definitions for Win32.) Click OK
to close the dialog box.

3 Select Project > Settings from the menu. Click the Link tab
and add visa32.lib to the Object/Library Modules list box.
Optionally, you may add the library directly to your
project file. Click OK to close the dialog box.
Agilent VISA User’s Guide

Building a VISA Application in Windows 2

Agilent VISA User’s Guide
4 You may want to add the include files and library files
search paths. They are set as follows:

• Select Tools > Options from the menu.

• Click the Directories tab to set the include file path.

• Select Include Files from the Show Directories For list box.

• Click at the bottom of the list box and type one of the
following: C:\Program Files\VISA\win95\include
or
C:\Program Files\VISA\winnt\include.

5 Select Library Files from the Show Directories For list box.

6 Click at the bottom of the list box and type one of the
following:
C:\Program Files\VISA\win95\lib\msc or
C:\Program Files\VISA\winnt\lib\msc
Sample VISA Program (C/C++)
This section lists a sample program called idn that queries a
GPIB instrument for its identification string. This sample
assumes a Win32 console application using Microsoft Visual
Studio® on Windows.

The idn sample files are in the ProgrammingSamples
directory under the Agilent IO Libraries Suite installation
directory. By default, the sample files are in C:\Program
Files\Agilent\IO Libraries Suite\
ProgrammingSamples\C\VISA.

Sample C/C++ Program Source Code

The source file idn.c follows. An explanation of the various
function calls in the sample is provided directly after the
program listing. If the program runs correctly and your PC
is connected to a 54622A oscilloscope, the following is an
example of the program output.

AGILENT TECHNOLOGIES,54622A,987654312,A.01.50

If the program does not run, see the Event Viewer for a list of
run- time errors.
15

16

2 Building a VISA Application in Windows
/*idn.c
This example program queries a GPIB device for
an identification string and prints the
results. Note that you must change the address.

*/

#include <visa.h>
#include <stdio.h>

void main () {

ViSession defaultRM, vi;
char buf [256] = {0};

/* Open session to GPIB device at address 22 */
viOpenDefaultRM(&defaultRM);
viOpen(defaultRM,

"GPIB0::22::INSTR",VI_NULL,VI_NULL,
 &vi);

/* Initialize device */
viPrintf(vi, "*RST\n");
/* Send an *IDN? string to the device */
viPrintf(vi, "*IDN?\n");
/* Read results */
viScanf(vi, "%t", buf);

/* Print results */
printf("Instrument identification string:
%s\n", buf);

/* Close session */
viClose(vi);
viClose(defaultRM);}
Agilent VISA User’s Guide

Building a VISA Application in Windows 2

Agilent VISA User’s Guide
C/C++ Sample Program Contents

A summary of the VISA function calls used in the preceding
sample C/C++ program follows. For a more detailed
explanation of VISA functionality, see Chapter 3,
“Programming with VISA.” See the VISA Online Help for
more detailed information on these VISA function calls.

Table 2 Summary of VISA Function Calls Used in the C/C++ Sample

Function(s) Description

visa.h This file is included at the beginning of the program to
provide the function prototypes and constants defined by
VISA.

ViSession The ViSession is a VISA data type. Each object that will
establish a communication channel must be defined as
ViSession.

viOpenDefaultRM You must first open a session with the default resource
manager with the viOpenDefaultRM function. This function
will initialize the default resource manager and return a
pointer to that resource manager session.

viOpen This function establishes a communication channel with
the device specified. A session identifier that can be used
with other VISA functions is returned. This call must be
made for each device you will be using.

viPrintf and
viScanf

These are the VISA formatted I/O functions that are
patterned after those used in the C programming language.
The viPrintf call sends the IEEE 488.2 *RST command to
the instrument and puts it in a known state. The viPrintf
call is used again to query for the device identification
(*IDN?). The viScanf call is then used to read the results.

viClose This function must be used to close each session. When
you close a device session, all data structures that had
been allocated for the session will be deallocated. When
you close the default manager session, all sessions opened
using that default manager session will be closed.
17

2 Building a VISA Application in Windows
Building a VISA Program (Visual Basic)
18
This section provides guidelines for building a VISA program
in the Visual Basic (VB) language, including:

• Visual Basic Programming Considerations

• Sample VISA Program (Visual Basic)
Visual Basic Programming Considerations
Some considerations for programming in Visual Basic follow.

Required Module for a Visual Basic VISA Program

Before you can use VISA specific functions, your application
must add the visa32.bas VISA Visual Basic module found
in one of the following directories (assuming default
installation directories):

• For Windows 2000/XP,
C:\Program Files\VISA\winnt\include\

• For Windows 98SE/Me,
C:\Program Files\VISA\win95\include\.

Installing the visa32.bas File

To install visa32.bas:

1 Select Project > Add Module from the menu.

2 Select the Existing tab.

3 Browse and select the visa32.bas file from the
applicable directory.

4 Click the Open button.

VISA Limitations in Visual Basic

VISA functions return a status code that indicates success or
failure of the function. The only indication of an error is the
value of a returned status code. The VB Error variable is not
Agilent VISA User’s Guide

Building a VISA Application in Windows 2

Agilent VISA User’s Guide
set by any VISA function. Thus, you cannot use the ON
ERROR construct in VB or the value of the VB Error variable
to catch VISA function errors.

VISA cannot call back to a VB function. Thus, you can only
use the VI_QUEUE mechanism in viEnableEvent. There is
no way to install a VISA event handler in VB.

VISA functions that take a variable number of parameters
(viPrintf, viScanf, viQueryf) are not callable from VB.
Use the corresponding viVPrintf, viVScanf and
viVQueryf functions instead.

You cannot pass variables of type Variant to VISA functions.
If you attempt this, the Visual Basic program will probably
crash with a 'General Protection Fault' or an 'Access
Violation.'

Format Conversion Commands

The functions viVPrintf, viVscanf and viVqueryf can
be called from VB, but there are restrictions on the format
conversions that can be used. Only one format conversion
command can be specified in a format string (a format
conversion command begins with the % character).

For example, the following is invalid:

status = viVPrintf(vi, "%lf%d" + Chr$(10),
...)

Instead, you must make one call for each format conversion
command, as shown in the following example:

status = viVPrintf(vi, "%lf" + Chr$(10),
dbl_value)
status = viVPrintf(vi, "%d" + Chr$(10),
int_value)

Numeric Arrays

When reading from or writing to a numeric array, you must
specify the first element of a numeric array as the params
parameter. This passes the address of the first array element
19

20

2 Building a VISA Application in Windows
to the function. For example, the following code declares an
array of 50 floating point numbers and then calls
viVPrintf to write from the array.

Dim flt_array(50) As Double
status = viVPrintf(id, "%,50f", dbl_array(0))

Strings

When reading in a string value with viVScanf or
viVQueryf, you must pass a fixed length string as the
params parameter. To declare a fixed length string, instead
of using the normal variable length declaration:

Dim strVal as String

use the following declaration, where 40 is the fixed length.

 Dim strVal as String * 40
Sample VISA Program (Visual Basic)
This section lists a sample program called idn that queries a
GPIB instrument for its identification string. This sample
builds a standard .exe application for WIN32 programs
using the Visual Basic 6.0 programming language.

Assuming default installation directories, the idn sample files
are in C:\Program Files\Agilent\
IO Libraries Suite\ProgrammingSamples\VB6\VISA\IDN
Agilent VISA User’s Guide

Building a VISA Application in Windows 2

Agilent VISA User’s Guide
Steps to Running the Program

The steps to building and running the idn sample program
follow.

1 Connect an instrument to a GPIB interface that is
compatible with IEEE 488.2.

2 Start the Visual Basic 6.0 application.
NOTE This example assumes you are building a new project (no .vbp file exists
for project). If you do not want to build the project from scratch, from the
menu select File > Open Project... and select and open the idn.vbp file.
Then skip to Step 9.
3 Start a new Visual Basic Standard .exe project. VB 6.0
will open a new project, Project1, with a blank Form,
Form1.

4 From the menu, select Project > Add Module, select the
Existing tab, and browse to the idn directory.

5 The idn sample files are located in directory
vb\samples\idn. Select the file idn.bas and click Open.
Since the Main() subroutine is executed when the
program is run without requiring user interaction with a
Form, you may delete Form1 if desired. To do this,
right- click Form1 in the Project Explorer window and
select Remove Form1.

6 VISA applications in Visual Basic require the VISA Visual
Basic (VB) declaration file visa32.bas in your VB
project. This file contains the VISA function definitions
and constant declarations needed to make VISA calls from
Visual Basic.

7 To add this module to your project in VB 6.0, from the
menu select Project > Add Module, select the Existing tab,
browse to the directory containing the VB declaration file,
select visa32.bas, and click Open.

8 The name and location of the VB declaration file depends
on which operating system is used. Assuming the
standard VISA directory C:\Program Files\Visa, the
visa32.bas file can be found in one of these locations:
21

22

2 Building a VISA Application in Windows
\winnt\include\visa32.bas (Windows 2000/XP)
\win95\include\visa32.bas (Windows 98SE/Me)

9 At this point, the Visual Basic project can be run and
debugged. You will need to change the VISA interface
name and address in the code to match your device’s
configuration.

10 If you want to compile to an executable file, from the
menu select File > Make idn.exe... and press Open. This will
create idn.exe in the idn directory.

Sample Program Source Code

An explanation of the various function calls in the sample is
provided after this program listing. If the program runs
correctly, the following is an example of the output that
appears in a message box if your PC is connected to a
54601A oscilloscope.

HEWLETT-PACKARD,54601A,0,1.7

If the program does not run, see the Event Viewer for a list of
run- time errors. The source file idn.bas follows.

Option Explicit
''
'''''''''''''''''''
' idn.bas
' This example program queries a GPIB device for
' an identification string and prints the
' results. Note that you may have to change the
' VISA Interface Name and address for your
' device from "GPIB0" and "22",respectively.

''
'''''''''''''''''''

Sub Main()
 Dim defrm As Long 'Session to Default
 Resource Manager
 Dim vi As Long 'Session to instrument
 Dim strRes As String * 200 'Fixed length
 string to hold results
Agilent VISA User’s Guide

Building a VISA Application in Windows 2

Agilent VISA User’s Guide

 ' Open the default resource manager session
 Call viOpenDefaultRM(defrm)
 ' Open the session to the resource
 ' The "GPIB0" parameter is the VISA Interface
 ' name to a
 ' GPIB instrument as defined in
 ' Connection Expert.
 ' Change this name to what you have defined
 ' for your VISA Interface.
 ' "GPIB0::22::INSTR" is the address string
 ' for the device.
 ' this address will be the same as seen in:
 ' Connection Expert)

 Call viOpen(defrm, "GPIB0::22::INSTR", 0, 0,
 vi)

 ' Initialize device
 Call viVPrintf(vi, "*RST" + Chr$(10), 0)

 ' Ask for the device's *IDN string.
 Call viVPrintf(vi, "*IDN?" + Chr$(10), 0)

 ' Read the results as a string.
 Call viVScanf(vi, "%t", strRes)

 ' Display the results
 MsgBox "Result is: " + strRes, vbOKOnly,
 "*IDN? Result"

 ' Close the vi session and the resource
 manager session
 Call viClose(vi)
 Call viClose(defrm)
End Sub
23

24

2 Building a VISA Application in Windows
Sample Program Contents

A summary of the VISA function calls used in the preceding
sample Visual Basic program follows. For a more detailed
explanation of VISA functionality, see Chapter 3,
“Programming with VISA.” See the VISA Online Help for
more detailed information on these VISA function calls.

Table 3 Summary of VISA Function Calls in Visual Basic Sample

Function(s) Description

viOpenDefaultRM You must first open a session with the default resource
manager with the viOpenDefaultRM function. This
function will initialize the default resource manager and
return a pointer (defrm) to that resource manager
session.

viOpen This function establishes a communication channel
with the device specified. A session identifier (vi) that
can be used with other VISA functions is returned. This
call must be made for each device you will be using.

viVPrintf and viVScanf These are the VISA formatted I/O functions. The
viVPrintf call sends the IEEE 488.2 *RST command to
the instrument (plus a linefeed character) and puts it in
a known state. The viVPrintf call is used again to query
for the device identification (*IDN?). The viVScanf call
is then used to read the results (strRes) that are
displayed in a Message Box.

viClose This function must be used to close each session.
When you close a device session, all data structures
that had been allocated for the session will be
deallocated. When you close the default manager
session, all sessions opened using that default
manager session will be closed.
Agilent VISA User’s Guide

Building a VISA Application in Windows 2
Logging Error Messages
Agilent VISA User’s Guide
When developing or debugging your VISA application, you
may want to view internal VISA messages while your
application is running. You can do this by using the Message
Viewer utility (for Windows 98SE/Me), the Event Viewer utility
(for Windows 2000/XP), or the Debug Window (for Windows
98SE/Me/2000/XP). There are three choices for VISA logging:

• Off (default) for best performance

• Event Viewer/Message Viewer

• Debug Window
Using the Event Viewer
On Windows 2000 and Windows XP, the Event Viewer utility
provides a way to view internal VISA error messages during
application execution. Some of these internal messages do
not represent programming errors; they indicate events
which are being handled internally by VISA. The process for
using the Event Viewer is:

• Enable VISA logging from the Agilent IO Control by
clicking the blue IO icon on the taskbar and then clicking
Agilent VISA Options > VISA Logging > Event Viewer.

• Run your VISA program.

• View VISA error messages by running the Event Viewer.
From the Agilent IO Control, click Event Viewer. VISA error
messages will appear in the application log of the Event
Viewer utility.
Using the Message Viewer
On Windows 98SE or Windows Me, the Message Viewer utility
provides a way to view internal VISA error messages during
application execution. Some of these internal messages do
not represent programming errors, but are actually error
messages from VISA which are being handled internally by
VISA.
25

26

2 Building a VISA Application in Windows
The Message Viewer utility must be run BEFORE you run
your VISA application. However, the utility will receive
messages while minimized. This utility also provides menu
selections for saving the logged messages to a file and for
clearing the message buffer.

The process for using the Message Viewer is:

• Enable VISA logging from the Agilent IO Control by
clicking the blue IO icon on the taskbar, then clicking
Agilent VISA Options > VISA Logging > Message Viewer.

• Start the Message Viewer. From the Agilent IO Control,
click Message Viewer.

• Run your VISA program.

• View error messages in the Message Viewer window.
Using the Debug Window
When VISA logging is directed to the Debug Window, VISA
writes logging messages using the Win32 API call
OutputDebugString(). The most common use for this feature
is when debugging your VISA program using an application
such as Microsoft Visual Studio. In this case, VISA messages
will appear in the Visual Studio output window. The process
for using the Debug Window is:

1 Enable VISA logging from the Agilent IO Control by
clicking the blue IO icon on the taskbar and then clicking
Agilent VISA Options > VISA Logging > Debug Window.

2 Run your VISA program from Microsoft Visual Studio (or
equivalent application).

3 View error messages in the Visual Studio (or equivalent)
output window.
Agilent VISA User’s Guide

Agilent IO Libraries Suite
Agilent VISA User’s Guide
3
Programming with VISA

This chapter describes how to program with VISA. The
basics of VISA are described, including formatted I/O, events
and handlers, attributes, and locking. Sample programs are
also provided and can be found in the
ProgrammingSamples subdirectory
(C:\Program Files\Agilent\IO Libraries Suite\
ProgrammingSamples in a default installation).

Click the IO Control and select Installation Information to see
the specific installation directories used on your PC. For
specific details on VISA functions, see the VISA Online Help.

This chapter contains the following sections:

• VISA Resources and Attributes

• Using Sessions

• Sending I/O Commands

• Using Events and Handlers

• Trapping Errors

• Using Locks
27Agilent Technologies

3 Programming with VISA
VISA Resources and Attributes
28
This section introduces VISA resources and attributes,
including:

• VISA Resources

• VISA Attributes
VISA Resources
In VISA, a resource is defined as any device (such as a
voltmeter) with which VISA can provide communication.
VISA defines six resource classes that a complete VISA
system, fully compliant with the VXIplug&play Systems
Alliance specification, can implement. Each resource class
includes:

• Attributes to determine the state of a resource or session
or to set a resource or session to a specified state.

• Events for communication with applications.

• Operations (functions) that can be used for the resource
class.

A summary description of each resource class supported by
Agilent VISA follows. See VISA Resource Classes in the VISA
Online Help for a description of the attributes, events, and
operations for each resource class.
NOTE Although the Servant Device-Side (SERVANT) resource is defined by the
VISA specification, the SERVANT resource is not supported by Agilent
VISA. See VISA Resource Classes in the VISA Online Help for a description
of the SERVANT resource.
Table 4 Descriptions of Resource Classes Supported by Agilent VISA

Resource Class Interface Types Resource Class Description

Instrument Control
(INSTR)

Generic, GPIB,
GPIB-VXI, Serial,
TCPIP, USB, VXI

Device operations (reading,
writing, triggering, etc.).
Agilent VISA User’s Guide

Programming with VISA 3

Agilent VISA User’s Guide
GPIB Bus Interface
(INTFC)

Generic, GPIB Raw GPIB interface operations
(reading, writing, triggering,
etc.).

Memory Access
(MEMACC)

Generic, GPIB-VXI,
VXI

Address space of a
memory-mapped bus such as
the VXIbus.

VXI Mainframe
Backplane
(BACKPLANE)

Generic, GPIB-VXI,
VXI (GPIB-VXI
BACKPLANE not
supported)

VXI-defined operations and
properties of each backplane (or
chassis) in a VXIbus system.

Servant Device-Side
Resource (SERVANT)

GPIB, VXI, TCPIP
(not supported)

Operations and properties of the
capabilities of a device and a
device's view of the system in
which it exists.

TCPIP Socket
(SOCKET)

Generic, TCPIP Operations and properties of a
raw network socket connection
using TCPIP.

Table 4 Descriptions of Resource Classes Supported by Agilent VISA
VISA Attributes
Attributes are associated with resources or sessions. You
can use attributes to determine the state of a resource or
session, or to set a resource or session to a specified state.

For example, you can use the viGetAttribute function to
read the state of an attribute for a specified session, event
context, or find list. There are read only (RO) and
read/write (RW) attributes. Use the viSetAttribute function
to modify the state of a read/write attribute for a specified
session, event context, or find list.

The pointer passed to viGetAttribute must point to the
exact type required for that attribute (ViUInt16, ViInt32,
etc.). For example, when reading an attribute state that
returns a ViUInt16, you must declare a variable of that type
and use it for the returned data. If ViString is returned, you
must allocate an array and pass a pointer to that array for
the returned data.
29

30

3 Programming with VISA
Sample: Reading a VISA Attribute

This code sample reads the state of the
VI_ATTR_TERMCHAR_EN attribute and changes it if it is not
true.

ViBoolean state, newstate;
newstate=VI_TRUE;
viGetAttribute(vi, VI_ATTR_TERMCHAR_EN, &state);
if (state err !=VI_TRUE) viSetAttribute(vi,
 VI_ATTR_TERMCHAR_EN, newstate);
Agilent VISA User’s Guide

Programming with VISA 3
Using Sessions
Agilent VISA User’s Guide
This section shows how to use VISA sessions, including:

• Including the VISA Declarations File (C/C++)

• Adding the visa32.bas File (Visual Basic)

• Opening a Session to a Resource

• Addressing a Session

• Closing a Session

• Searching for Resources
Including the VISA Declarations File (C/C++)
For C and C++ programs, you must include the visa.h
header file at the beginning of every file that contains VISA
function calls:

#include "visa.h"

This header file contains the VISA function prototypes and
the definitions for all VISA constants and error codes. The
visa.h header file also includes the visatype.h header
file.

The visatype.h header file defines most of the VISA types.
The VISA types are used throughout VISA to specify data
types used in the functions. For example, the
viOpenDefaultRM function requires a pointer to a parameter
of type ViSession. If you find ViSession in the visatype.h
header file, you will find that ViSession is eventually typed
as an unsigned long. VISA types are also listed in VISA
System Information in the VISA Online Help.
Adding the visa32.bas File (Visual Basic)
You must add the visa32.bas Basic module file to your
Visual Basic project. The visa32.bas file contains the VISA
function prototypes and definitions for all VISA constants
and error codes.
31

3 Programming with VISA
Opening a Session
32
A session is a channel of communication. Sessions must first
be opened on the default resource manager, and then for
each resource you will be using.

• A resource manager session is used to initialize the VISA
system. It is a parent session that knows about all the
opened sessions. A resource manager session must be
opened before any other session can be opened.

• A resource session is used to communicate with a
resource on an interface. A session must be opened for
each resource you will be using. When you use a session
you can communicate without worrying about the type of
interface to which it is connected. This insulation makes
applications more robust and portable across interfaces.

Resource Manager Sessions

There are two parts to opening a communications session
with a specific resource. First, you must open a session to
the default resource manager with the viOpenDefaultRM
function. The first call to this function initializes the default
resource manager and returns a session to that resource
manager session. You only need to open the default manager
session once. However, subsequent calls to
viOpenDefaultRM return a unique session to the same
default resource manager resource.

Resource Sessions

Next, open a session with a specific resource using the
viOpen function. This function uses the session returned
from viOpenDefaultRM and returns its own session to
identify the resource session. The following shows the
function syntax.

viOpenDefaultRM(sesn);
viOpen(sesn, rsrcName, accessMode, timeout,
 vi);
Agilent VISA User’s Guide

Programming with VISA 3

Agilent VISA User’s Guide
The session returned from viOpenDefaultRM must be used
in the sesn parameter of the viOpen function. The viOpen
function then uses that session and the resource address
specified in the rsrcName parameter to open a resource
session. The vi parameter in viOpen returns a session
identifier that can be used with other VISA functions.

Your program may have several sessions open at the same
time after creating multiple session identifiers by calling the
viOpen function multiple times. The following table
summarizes the parameters in the previous function calls.

Table 5 Parameters Used in Function Calls

Parameter Description

sesn A session returned from the viOpenDefaultRM function that
identifies the resource manager session.

rsrcName A unique symbolic name of the resource (resource address).

accessMode Specifies the modes by which the resource is to be accessed.
The value VI_EXCLUSIVE_LOCK is used to acquire an exclusive
lock immediately upon opening a session. If a lock cannot be
acquired, the session is closed and an error is returned. The
VI_LOAD_CONFIG value is used to configure attributes specified
by some external configuration utility. If this value is not used,
the session uses the default values provided by this
specification.

Multiple access modes can be used simultaneously by specifying
a “bit-wise OR” of the values.

timeout If the accessMode parameter requires a lock, this parameter
specifies the absolute time period (in milliseconds) that the
resource waits to get unlocked before this operation returns an
error. Otherwise, this parameter is ignored.

vi This is a pointer to the session identifier for this particular
resource session. This pointer will be used to identify this
resource session when using other VISA functions.
33

34

3 Programming with VISA
Sample: Opening a Resource Session

This code sample shows one way of opening resource
sessions with a GPIB multimeter and a GPIB-VXI scanner.
The sample first opens a session with the default resource
manager. The sample then uses the session returned from
the resource manager, and a VISA address, to open a session
with the GPIB device at address 22. You can now identify
that session as dmm when you call other VISA functions.

The sample again uses the session returned from the
resource manager, with another VISA address, to open a
session with the GPIB-VXI device at primary address 9 and
VXI logical address (secondary address) 24. You will now
identify this session as scanner when calling other VISA
functions. See the following section, “Addressing a Session”,
for information on addressing particular devices.

ViSession defaultRM, dmm, scanner;
.

viOpenDefaultRM(&defaultRM);
viOpen(defaultRM, "GPIB0::22::INSTR",VI_NULL,
 VI_NULL,&dmm);
viOpen(defaultRM, "GPIB-VXI0::24::INSTR",
 VI_NULL, VI_NULL,&scanner);
.

viClose(scanner);
viClose(dmm);
viClose(defaultRM);
Addressing a Session
As shown in the previous section, the rsrcName parameter
in the viOpen function is used to identify a specific
resource. This parameter consists of the VISA interface ID
and the resource address. The interface ID is determined
when you run the Agilent Connection Expert utility. The
interface ID is usually the VISA interface type followed by a
number.
Agilent VISA User’s Guide

Programming with VISA 3

Agilent VISA User’s Guide
The following table illustrates the format of the rsrcName
for different VISA interface types. INSTR is an optional
parameter that indicates that you are communicating with a
resource that is of type INSTR, meaning instrument. The
keywords are:

• ASRL - used for asynchronous serial devices.

• GPIB - used for GPIB devices and interfaces.

• GPIB- VXI - used for GPIB-VXI controllers.

• TCPIP - used for LAN instruments.

• VXI - used for VXI instruments.

• USB - used for USB instruments.

Table 6 The Format of the rsrcName (VISA Address) for Different
Interface Types

Interface Typical Syntax

ASRL ASRL[board][::INSTR]

GPIB GPIB[board]::primary address[::secondary address][::INSTR]

GPIB GPIB[board]::INTFC

GPIB-VXI GPIB-VXI[board]::VXI logical address[::INSTR]

GPIB-VXI GPIB-VXI[board]::MEMACC

GPIB-VXI GPIB-VXI[board][::VXI logical address]::BACKPLANE

TCPIP TCPIP[board]::host address[::LAN device name]::INSTR

TCPIP TCPIP[board]::host address::port::SOCKET

USB USB[board]::manufacturer ID::model code::serial number[::USB
interface number][::INSTR]

VXI VXI[board]::VXI logical address[::INSTR]

VXI VXI[board]::MEMACC

VXI VXI[board][::VXI logical address]::BACKPLANE
35

36

3 Programming with VISA
The following table describes the parameters used above.

Some examples of valid VISA addresses follow.

Table 7 Description of Parameters

Parameter Description

board This optional parameter is used if you have more than
one interface of the same type. The default value for
board is 0.

host address The IP address (in dotted decimal notation) or the
name of the host computer/gateway.

LAN device name The assigned name for a LAN device. The default is
inst().

manufacturer ID Manufacturer’s ID for a USB Test & Measurement
class device

model code Model code of a USB device.

port The port number to use for a TCP/IP Socket
connection.

primary address The primary address of the GPIB device.

secondary address This optional parameter is the secondary address of
the GPIB device. If no secondary address is specified,
none is assumed.

serial number Serial number of a USB device.

USB interface number Interface number of a USB device.

VXI logical address Logical address of a VXI instrument within a
mainframe.

Table 8 Examples of Valid VISA Addresses

Address String Description

VXI0::1::INSTR A VXI device at logical address 1 in VXI
interface VXI0.

GPIB-VXI::9::INSTR A VXI device at logical address 9 in a
GPIB-VXI controlled VXI system.
Agilent VISA User’s Guide

Programming with VISA 3

Agilent VISA User’s Guide
Sample: Opening a Session

This sample shows one way to open a VISA session with the
GPIB device at primary address 23.

ViSession defaultRM, vi;
.
.

GPIB::1::0::INSTR A GPIB device at primary address 1 and
secondary address 0 in GPIB interface 0.

ASRL1::INSTR A serial device located on port 1.

VXI::MEMACC Board-level register access to the VXI
interface.

GPIB-VXI1::MEMACC Board-level register access to GPIB-VXI
interface number 1.

GPIB2::INTFC Interface or raw resource for GPIB interface 2.

VXI::1::BACKPLANE Mainframe resource for chassis 1 on the
default VXI system, which is interface 0.

GPIB-VXI2:: BACKPLANE Mainframe resource for default chassis on
GPIB-VXI interface 2.

GPIB1::SERVANT Servant/device-side resource for GPIB
interface 1.

VXI0::SERVANT Servant/device-side resource for VXI
interface 0.

TCPIP0::1.2.3.4::999::SOCKET Raw TCPIP access to port 999 at the specified
address.

TCPIP::devicename@company.
com::INSTR

TCPIP device using VXI-11 located at the
specified address. This uses the default LAN
Device Name of inst0.

USB::0x1234::125::A22-5::INSTR USB Test & Measurement class device with
manufacturer ID 0x1234, model code 125, and
serial number A22-5. This uses the device's
first available USBTMC interface, which is
usually numbered 0.

Table 8 Examples of Valid VISA Addresses
37

38

3 Programming with VISA
viOpenDefaultRM(&defaultRM);
viOpen(defaultRM, "GPIB0::23::INSTR", VI_NULL,
 VI_NULL,&vi);
.
.
viClose(vi);
viClose(defaultRM);
Closing a Session
You must use the viClose function to close each session. You
can close the specific resource session, which will free all
data structures that had been allocated for the session. If
you close the default resource manager session, all sessions
opened using that resource manager session will be closed.

Since system resources are also used when searching for
resources (viFindRsrc), the viClose function needs to be
called to free up find lists. See the following section,
“Searching for Resources”, for more information on closing
find lists.
Searching for Resources
When you open the default resource manager, you are
opening a parent session that knows about all the other
resources in the system. Since the resource manager session
knows about all resources, it has the ability to search for
specific resources and open sessions to these resources. You
can, for example, search an interface for devices and open a
session with one of the devices found.

Use the viFindRsrc function to search an interface for
device resources. This function finds matches and returns
the number of matches found and a handle to the resources
found. If there are more matches, use the viFindNext
function with the handle returned from viFindRsrc to get
the next match:

viFindRsrc(sesn, expr, findList, retcnt,
 instrDesc);
.
Agilent VISA User’s Guide

Programming with VISA 3

Agilent VISA User’s Guide
.
viFindNext(findList, instrDesc);
.
.
viClose (findList);

The parameters are defined as follows.

The handle returned from viFindRsrc should be closed to
free up all the system resources associated with the search.
To close the find object, pass the findList to the viClose
function.

Use the expr parameter of the viFindRsrc function to
specify the interface to search. You can search for devices
on the specified interface. Use the following table to
determine what to use for your expr parameter.

Table 9 Definitions of Parameters

Parameter Description

sesn The resource manager session.

expr The expression that identifies what to search (see Table 10).

findList A handle that identifies this search. This handle will then be
used as an input to the viFindNext function when finding the
next match.

retcnt A pointer to the number of matches found.

instrDesc A pointer to a string identifying the location of the match. Note
that you must allocate storage for this string.
NOTE Because VISA interprets strings as regular expressions, the string
GPIB?*INSTR applies to both GPIB and GPIB-VXI devices.
39

40

3 Programming with VISA
Sample: Searching the VXI Interface for Resources

This code sample searches the VXI interface for resources.
The number of matches found is returned in nmatches, and
matches points to the string that contains the matches
found. The first call returns the first match found, the
second call returns the second match found, etc.
VI_FIND_BUFLEN is defined in the visa.h declarations file.

ViChar buffer [VI_FIND_BUFLEN];
ViRsrc matches=buffer;
ViUInt32 nmatches;
ViFindList list;
.
.
viFindRsrc(defaultRM, "VXI?*INSTR", &list,
 &nmatches, matches);
..
.
viFindNext(list, matches);
.
.
viClose(list);

Table 10 Determining What to Use for the expr Parameter

Interface expr Parameter

GPIB GPIB[0-9]*::?*INSTR

VXI VXI?*INSTR

GPIB-VXI GPIB-VXI?*INSTR

GPIB and GPIB-VXI GPIB?*INSTR

All VXI ?*VXI[0-9]*::?*INSTR

ASRL ASRL[0-9]*::?*INSTR

All ?*INSTR
Agilent VISA User’s Guide

Programming with VISA 3
Sending I/O Commands
Agilent VISA User’s Guide
This section provides guidelines for sending I/O commands,
including:

• Types of I/O

• Using Formatted I/O

• Using Non- Formatted I/O
Types of I/O
Once you have established a communications session with a
device, you can start communicating with that device using
VISA's I/O routines. VISA provides both formatted and
non- formatted I/O routines.

• Formatted I/O converts mixed types of data under the
control of a format string. The data is buffered, thus
optimizing interface traffic.

• Non- formatted I/O sends or receives raw data to or from
a device. With non- formatted I/O, no format or conversion
of the data is performed. Thus, if formatted data is
required, it must be done by the user.

You can choose between VISA's formatted and non- formatted
I/O routines. However, you should not mix formatted I/O
and non- formatted I/O in the same session. See the
following sections for descriptions and code samples using
formatted I/O and non- formatted I/O in VISA.
Using Formatted I/O
The VISA formatted I/O mechanism is similar to the C stdio
mechanism. The VISA formatted I/O functions are viPrintf,
viQueryf, and viScanf. There are also two non- buffered and
non- formatted I/O functions that synchronously transfer
data, called viRead and viWrite, and two that
asynchronously transfer data, called viReadAsync and
viWriteAsync.
41

42

3 Programming with VISA
These are raw I/O functions and do not intermix with the
formatted I/O functions. See “Using Non- Formatted I/O” in
this chapter for details. See the VISA Online Help for more
information on how data is converted under the control of
the format string.

Formatted I/O Functions

As noted, the VISA formatted I/O functions are viPrintf,
viQueryf, and viScanf.
• The viPrintf functions format according to the format

string and send data to a device. The viPrintf function
sends separate arg parameters, while the viVPrintf
function sends a list of parameters in params:

viPrintf(vi, writeFmt[, arg1][, arg2][, ...]);
viVPrintf(vi, writeFmt, params);

• The viScanf functions receive and convert data according
to the format string. The viScanf function receives
separate arg parameters, while the viVScanf function
receives a list of parameters in params:

viScanf(vi, readFmt[, arg1][, arg2][, ...]);
viVScanf(vi, readFmt, params);

• The viQueryf functions format and send data to a device
and then immediately receive and convert the response
data. Hence, the viQueryf function is a combination of the
viPrintf and viScanf functions. Similarly, the viVQueryf
function is a combination of the viVPrintf and viVScanf
functions. The viQueryf function sends and receives
separate arg parameters, while the viVQueryf function
sends and receives a list of parameters in params:

viQueryf(vi, writeFmt, readFmt[, arg1]
 [, arg2][, ...]);
viVQueryf(vi, writeFmt, readFmt, params);
Agilent VISA User’s Guide

Programming with VISA 3

Agilent VISA User’s Guide
Formatted I/O Conversion

The formatted I/O functions convert data under the control
of the format string. The format string specifies how the
argument is converted before it is input or output. The
format specifier sequence consists of a % (percent) followed
by an optional modifier(s), followed by a format code.

%[modifiers]format code

(See Table 11, “Descriptions of Format Codes,” on page 44.)
Zero or more modifiers may be used to change the meaning
of the format code. Modifiers are only used when sending or
receiving formatted I/O. To send formatted I/O, the asterisk
(*) can be used to indicate that the number is taken from
the next argument.

However, when the asterisk is used when receiving
formatted I/O, it indicates that the assignment is suppressed
and the parameter is discarded. Use the pound sign (#)
when receiving formatted I/O to indicate that an extra
argument is used. The following are supported modifiers. See
the viPrintf function in the VISA Online Help for additional
enhanced modifiers (@1, @2, @3, @H, @Q, or @B).

Field Width Field width is an optional integer that
specifies how many characters are in the field. If the
viPrintf or viQueryf (writeFmt) formatted data has fewer
characters than specified in the field width, it will be
padded on the left, or on the right if the – flag is present.

You can use an asterisk (*) in place of the integer in
viPrintf or viQueryf (writeFmt) to indicate that the
integer is taken from the next argument. For the viScanf
or viQueryf (readFmt) functions, you can use a # sign to
indicate that the next argument is a reference to the field
width.

The field width modifier is only supported with viPrintf
and viQueryf (writeFmt) format codes d, f, s, and
viScanf and viQueryf (readFmt) format codes c, s, and [].
(See Table 11 for a description of format codes.)
43

44

3 Programming with VISA
Sample: Using Field Width Modifier

The following sample pads numb to six characters and
sends it to the session specified by vi:

int numb = 61;
viPrintf(vi, "%6d\n", numb);

Inserts four spaces, for a total of 6 characters: 61

.Precision Precision is an optional integer preceded by a
period. This modifier is only used with the viPrintf and
viQueryf (writeFmt) functions. The meaning of this
argument is dependent on the conversion character used.
You can use an asterisk (*) in place of the integer to
indicate the integer is taken from the next argument.

Sample: Using the Precision Modifier

This sample converts numb so that there are only two
digits to the right of the decimal point and sends it to the
session specified by vi:

float numb = 26.9345;
viPrintf(vi, "%.2f\n", numb);

Sends: 26.93

Table 11 Descriptions of Format Codes

Format Code Description

d Indicates the minimum number of digits to appear is specified
for the @1, @H, @Q, and @B flags, and the i, o, u, x, and X format
codes.

f Indicates the maximum number of digits after the decimal point
is specified.

s Indicates the maximum number of characters for the string is
specified.

g Indicates the maximum significant digits are specified.
Agilent VISA User’s Guide

Programming with VISA 3

Agilent VISA User’s Guide
Argument Length Modifier The meaning of the optional
argument length modifier h, l, L, z, or Z is dependent
on the conversion character, as listed in the following
table. Note that z and Z are not ANSI C standard
modifiers.

, Array Size The comma operator is a format modifier
that allows you to read or write a comma- separated list
of numbers (only valid with %d and %f format codes). It is
a comma followed by an integer. The integer indicates the
number of elements in the array. The comma operator has
the format of ,dd where dd is the number of elements to
read or write.

Table 12 Argument Length Modifiers

Argument
Length
Modifier

Format
Codes

Description

h d,b,B Corresponding argument is a short integer or a reference
to a short integer for d. For b or B, the argument is the
location of a block of data or a reference to a data array. (B
is only used with viPrintf or viQueryf (writeFmt).)

l d,f,b,B Corresponding argument is a long integer or a reference
to a long integer for d. For f, the argument is a double float
or a reference to a double float. For b or B, the argument is
the location of a block of data or a reference to a data
array. (B is only used with viPrintf or viQueryf (writeFmt).)

L f Corresponding argument is a long double or a reference to
a long double.

z b,B Corresponding argument is an array of floats or a
reference to an array of floats. (B is only used with
viPrintf or viQueryf (writeFmt).)

Z b,B Corresponding argument is an array of double floats or a
reference to an array of double floats. (B is only used with
viPrintf or viQueryf (writeFmt).)
45

46

3 Programming with VISA
For viPrintf or viQueryf (writeFmt), you can use an
asterisk (*) in place of the integer to indicate that the
integer is taken from the next argument. For viScanf or
viQueryf (readFmt), you can use a # sign to indicate that
the next argument is a reference to the array size.

Sample: Using Array Size Modifier

This sample specifies a comma- separated list to be sent to
the session specified by vi:

int list[5]={101,102,103,104,105};
viPrintf(vi, "%,5d\n", list);

Sends: 101,102,103,104,105

Special Characters Special formatting character
sequences will send special characters. The following
describes the special characters and what will be sent.

The format string for viPrintf and viQueryf (writeFmt)
puts a special meaning on the newline character (\n). The
newline character in the format string flushes the output
buffer to the device.

All characters in the output buffer will be written to the
device with an END indicator included with the last byte
(the newline character). This means you can control at
what point you want the data written to the device. If no
newline character is included in the format string, the
characters converted are stored in the output buffer. It
will require another call to viPrintf, viQueryf (writeFmt),
or viFlush to have those characters written to the device.

This can be very useful in queuing up data to send to a
device. It can also raise I/O performance by doing a few
large writes instead of several smaller writes. The * while
using the viScanf functions acts as an assignment
suppression character. The input is not assigned to any
parameters and is discarded.

The grouping operator () in a regular expression has the
highest precedence, the + and * operators in a regular
expression have the next highest precedence after the
Agilent VISA User’s Guide

Programming with VISA 3

Agilent VISA User’s Guide
grouping operator, and the or operator | in a regular
expression has the lowest precedence. The following table
provides detailed descriptions of special characters and
operators. Some example expressions follow in Table 14.

Table 13 Descriptions of Special Characters and Operators

Special
Characters and
Operators

Description

? Matches any one character.

\ Makes the character that follows it an ordinary character
instead of special character. For example, when a question
mark follows a backslash (e.g.,’ '\?’), it matches the '?'
character instead of any one character.

[list] Matches any one character from the enclosed list. A hyphen
can be used to match a range of characters.

[^list] Matches any character not in the enclosed list. A hyphen
can be used to match a range of characters.

* Matches 0 or more occurrences of the preceding character
or expression.

+ Matches 1 or more occurrences of the preceding character
or expression.

exp|exp Matches either the preceding or following expression. The
or operator | matches the entire expression that precedes
or follows it and not just the character that precedes or
follows it. For example, VXI|GPIB means (VXI) | (GPIB),
not VXI(I|G)PIB.

(exp) Grouping characters or expressions.

“ “ Sends a blank space.

\n Sends the ASCII line feed character. The END identifier will
also be sent.

\r Sends an ASCII carriage return character.

\t Sends an ASCII TAB character.

\### Sends ASCII character specified by octal value.
47

48

3 Programming with VISA
\" Sends the ASCII double quote character.

\\ Sends a backslash character.

Table 14 Examples of Expressions and Matches

Example Expression Sample Matches

GPIB?*INSTR Matches GPIB0::2::INSTR, GPIB1::1::1::INSTR, and
GPIB-VXI1::8::INSTR

GPIB[0-9]*::?*INSTR Matches GPIB0::2::INSTR and GPIB1::1::1::INSTR but
not GPIB-VXI1::8::INSTR

GPIB[0-9]::?*INSTR Matches GPIB0::2::INSTR and GPIB1::1::1::INSTR but
not GPIB12::8::INSTR

GPIB[^0]::?*INSTR Matches GPIB1::1::1::INSTR but not GPIB0::2::INSTR
or GPIB12::8::INSTR

VXI?*INSTR Matches VXI0::1::INSTR but not
GPIB-VXI0::1::INSTR

GPIB-VXI?*INSTR Matches GPIB-VXI0::1::INSTR but not
VXI0::1::INSTR

?*VXI[0-9]*::?*INSTR Matches VXI0::1::INSTR and GPIB-VXI0::1::INSTR

ASRL[0-9]*::?*INSTR Matches ASRL1::INSTR but not VXI0::5::INSTR

ASRL1+::INSTR Matches ASRL1::INSTR and ASRL11::INSTR but not
ASRL2::INSTR

(GPIB|VXI)?*INSTR Matches GPIB1::5::INSTR and VXI0::3::INSTR but not
ASRL2::INSTR

(GPIB0|VXI0)::1::INSTR Matches GPIB0::1::INSTR and VXI0::1::INSTR

?*INSTR Matches all INSTR (device) resources

?*VXI[0-9]*::?*MEMACC Matches VXI0::MEMACC and GPIB-VXI1::MEMACC

VXI0::?* Matches VXI0::1::INSTR, VXI0::2::INSTR, and
VXI0::MEMACC

?* Matches all resources

Table 13 Descriptions of Special Characters and Operators
Agilent VISA User’s Guide

Programming with VISA 3

Agilent VISA User’s Guide
Format Codes. This table summarizes the format codes for
sending and receiving formatted I/O.

Sample: Receiving Data From a Session

This sample receives data from the session specified by the
vi parameter and converts the data to a string.

Table 15 Format Codes for Sending and Receiving Formatted I/O

Format Codes Description

viPrintf/viVPrintf and viQueryf/viVqueryf (writeFmt)

d, i Corresponding argument is an integer.

f Corresponding argument is a double.

c Corresponding argument is a character.

s Corresponding argument is a pointer to a null terminated string.

% Sends an ASCII percent (%) character.

o, u, x, X Corresponding argument is an unsigned integer.

e, E, g, G Corresponding argument is a double.

n Corresponding argument is a pointer to an integer.

b, B Corresponding argument is the location of a block of data.

viPrintf/viVPrintf and viQueryf/viVqueryf (readFmt)

d,i,n Corresponding argument must be a pointer to an integer.

e,f,g Corresponding argument must be a pointer to a float.

c Corresponding argument is a pointer to a character sequence.

s,t,T Corresponding argument is a pointer to a string.

o,u,x Corresponding argument must be a pointer to an unsigned
integer.

[Corresponding argument must be a character pointer.

b Corresponding argument is a pointer to a data array.
49

50

3 Programming with VISA
char data[180];
viScanf(vi, "%t", data);

Formatted I/O Buffers

The VISA software maintains both a read and write buffer
for formatted I/O operations. Occasionally, you may want to
control the actions of these buffers. You can modify the size
of the buffer using the viSetBuf function. See the VISA
Online Help for more information on this function.

The write buffer is maintained by the viPrintf or viQueryf
(writeFmt) functions. The buffer queues characters to send
to the device so that they are sent in large blocks, thus
increasing performance. The write buffer automatically
flushes when it sends a newline character from the format
string. It may occasionally be flushed at other
non- deterministic times, such as when the buffer fills.

When the write buffer flushes, it sends its contents to the
device. If you set the VI_ATTR_WR_BUF_OPER_MODE
attribute to VI_FLUSH_ON_ACCESS, the write buffer will
also be flushed every time a viPrintf or viQueryf operation
completes. See “VISA Attributes” in this chapter for
information
on setting VISA attributes.

The read buffer is maintained by the viScanf and viQueryf
(readFmt) functions. It queues the data received from a
device until it is needed by the format string. Flushing the
read buffer destroys the data in the buffer and guarantees
that the next call to viScanf or viQueryf reads data directly
from the device rather than data that was previously
queued.

If you set the VI_ATTR_RD_BUF_OPER_MODE attribute to
VI_FLUSH_ON_ACCESS, the read buffer will be flushed
every time a viScanf or viQueryf operation completes. See
“VISA Attributes” in this chapter for information on setting
VISA attributes.
Agilent VISA User’s Guide

Programming with VISA 3

Agilent VISA User’s Guide
You can manually flush the read and write buffers using the
viFlush function. Flushing the read buffer also includes
reading all pending response data from a device. If the
device is still sending data, the flush process will continue to
read data from the device until it receives an END indicator
from the device.

Sample: Sending and Receiving Formatted I/O

This C sample program shows sending and receiving
formatted I/O. The sample opens a session with a GPIB
device and sends a comma operator to send a
comma- separated list. This sample program is intended to
show specific VISA functionality and does not include error
trapping. Error trapping, however, is good programming
practice and is recommended in your VISA applications. See
“Trapping Errors” in this chapter for more information.

This sample program is installed on your system in the
ProgrammingSamples subdirectory. See the IO Libraries
Suite Online Help for locations of sample programs on your
operating system.

/*formatio.c
This example program makes a multimeter
measurement with a comma-separated list passed
with formatted I/O and prints the results. You
may need to change the device address. */

#include <visa.h>
#include <stdio.h>

void main () {

 ViSession defaultRM, vi;
 double res;
 double list [2] = {1,0.001};

 /* Open session to GPIB device at address 22*/
 viOpenDefaultRM(&efaultRM);
 viOpen(defaultRM, "GPIB0::22::INSTR",
 VI_NULL,VI_NULL, &vi);
51

52

3 Programming with VISA
 /* Initialize device */
 viPrintf(vi, "*RST\n");

 /* Set up device and send a comma-separated
 list */
 viPrintf(vi, "CALC:DBM:REF 50\n");
 viPrintf(vi, "MEAS:VOLT:AC? %,2f\n", list);

 /* Read results */
 viScanf(vi, "%lf", &res);

 /* Print results */
 printf("Measurement Results: %lf\n", res);

 /* Close session */
 viClose(vi);
 viClose(defaultRM);
 }
Using Non-Formatted I/O
There are two non- buffered, non- formatted I/O functions
that synchronously transfer data called viRead and viWrite.
Also, there are two non- formatted I/O functions that
asynchronously transfer data called viReadAsync and
viWriteAsync. These are raw I/O functions and do not
intermix with the formatted I/O functions.

Non-Formatted I/O Functions

The non- formatted I/O functions follow. For more
information, see the viRead, viWrite, viReadAsync,
viWriteAsync, and viTerminate functions in the VISA Online
Help.

viRead. The viRead function synchronously reads raw
data from the session specified by the vi parameter and
stores the results in the location where buf is pointing.
Only one synchronous read operation can occur at any
one time.

viRead(vi, buf, count, retCount);
Agilent VISA User’s Guide

Programming with VISA 3

Agilent VISA User’s Guide
viWrite. The viWrite function synchronously sends the
data pointed to by buf to the device specified by vi. Only
one synchronous write operation can occur at any one
time.

viWrite(vi, buf, count, retCount);

viReadAsync. The viReadAsync function asynchronously
reads raw data from the session specified by the vi
parameter and stores the results in the location where buf
is pointing. This operation normally returns before the
transfer terminates. Thus, the operation returns jobId,
which you can use with either viTerminate to abort the
operation or with an I/O completion event to identify
which asynchronous read operation completed.

viReadAsync(vi, buf, count, jobId);

viWriteAsync. The viWriteAsync function asynchronously
sends the data pointed to by buf to the device specified
by vi.
This operation normally returns before the transfer
terminates. Thus, the operation returns jobId, which you
can use with either viTerminate to abort the operation or
with an I/O completion event to identify which
asynchronous write operation completed.

viWriteAsync(vi, buf, count, jobId);

Sample: Using Non-Formatted I/O Functions

This sample program illustrates using non- formatted I/O
functions to communicate with a GPIB device. This sample
program is intended to show specific VISA functionality and
does not include error trapping. Error trapping, however, is
good programming practice and is recommended in your
VISA applications. See “Trapping Errors” in this chapter for
more information.

/*nonfmtio.c
This example program measures the AC voltage on
a multimeter and prints the results. You may
need to change the device address. */
53

54

3 Programming with VISA
#include <visa.h>
#include <stdio.h>

void main () {

 ViSession defaultRM, vi;
 char strres [20];
 unsigned long actual;

 /* Open session to GPIB device at address 22 */
 viOpenDefaultRM(&defaultRM);
 viOpen(defaultRM, "GPIB0::22::INSTR",
 VI_NULL,VI_NULL, &vi);

 /* Initialize device */
 viWrite(vi, (ViBuf)"*RST\n", 5, &actual);

 /* Set up device and take measurement */
 viWrite(vi, (ViBuf)"CALC:DBM:REF 50\n", 16,
 &actual);
 viWrite(vi, (ViBuf)"MEAS:VOLT:AC? 1, 0.001\n",
 23, &actual);

 /* Read results */
 viRead(vi, (ViBuf)strres, 20, &actual);

 /* NULL terminate the string */
 strres[actual]=0;

 /* Print results */
 printf("Measurement Results: %s\n", strres);

 /* Close session */
 viClose(vi);
 viClose(defaultRM);
 }
Agilent VISA User’s Guide

Programming with VISA 3
Using Events and Handlers
Agilent VISA User’s Guide
This section provides guidelines to using events and
handlers, including:

• Events and Attributes

• Using the Callback Method

• Using the Queuing Method
Events and Attributes
Events are special occurrences that require attention from
your application. Event types include Service Requests
(SRQs), interrupts, and hardware triggers. Events will not be
delivered unless the appropriate events are enabled.
NOTE VISA cannot call back to a Visual Basic function. Thus, you can only use
the queuing mechanism in viEnableEvent. There is no way to install a
VISA event handler in Visual Basic.
Event Notification

There are two ways you can receive notification that an
event has occurred:

• Install an event handler with viInstallHandler, and enable
one or several events with viEnableEvent. If the event
was enabled with a handler, the specified event handler
will be called when the specified event occurs. This is
called a callback.
NOTE VISA cannot call back to a Visual Basic function. This means that you can
only use the VI_QUEUE mechanism in viEnableEvent. There is no way to
install a VISA event handler in Visual Basic.
55

56

3 Programming with VISA
• Enable one or several events with viEnableEvent and call
the viWaitOnEvent function. The viWaitOnEvent function
will suspend the program execution until the specified
event occurs or the specified timeout period is reached.
This is called queuing.

The queuing and callback mechanisms are suitable for
different programming styles. The queuing mechanism is
generally useful for non- critical events that do not need
immediate servicing. The callback mechanism is useful when
immediate responses are needed. These mechanisms work
independently of each other, so both can be enabled at the
same time. By default, a session is not enabled to receive
any events by either mechanism.

The viEnableEvent operation can be used to enable a
session to respond to a specified event type using either the
queuing mechanism, the callback mechanism, or both.
Similarly, the viDisableEvent operation can be used to
disable one or both mechanisms. Because the two methods
work independently of each other, one can be enabled or
disabled regardless of the current state of the other.

Events that can be Enabled

The following table shows the events that are implemented
for Agilent VISA for each resource class, where AP = Access
Privilege, RO - Read Only, and RW = Read/Write. Note that
some resource classes/events, such as the SERVANT class
are not implemented by Agilent VISA and are not listed in
the following tables.

Once the application has received an event, information
about that event can be obtained by using the
viGetAttribute function on that particular event context. Use
the VISA viReadSTB function to read the status byte of the
service request.
Agilent VISA User’s Guide

Programming with VISA 3

Agilent VISA User’s Guide
.

Table 16 Instrument Control (INSTR) Resource Events

VI_EVENT_SERVICE_REQUEST
Notification that a service request was received from the device.

Event Attribute Description AP Data Type Range

VI_ATTR_EVENT_TYPE Unique logical identifier of the
event.

RO ViEventType VI_EVENT_SERVICE_REQ

VI_EVENT_VXI_SIGP
Notification that a VXIbus signal or VXIbus interrupt was received from the device.

Event Attribute Description AP Data Type Range

VI_ATTR_EVENT_TYPE Unique logical identifier of the
event.

RO ViEventType VI_EVENT_VXI_STOP

VI_ATTR_SIGP_STATUS_ID The 16-bit Status/ID value retrieved
during the IACK cycle or from the
Signal register.

RO ViUInt16 0 to FFFFh

VI_EVENT_TRIG
Notification that a trigger interrupt was received from the device. For VISA, the only triggers that can be sensed are VXI
hardware triggers on the assertion edge (SYNC and ON trigger protocols only).

Event Attribute Description AP Data Type Range

VI_ATTR_EVENT_TYPE Unique logical identifier of the
event.

RO ViEventType VI_EVENT_TRIG

VI_ATTR_RECV_TRIG_ID The identifier of the triggering
mechanism on which the specified
trigger event was received.

RO ViInt16 VI_TRIG_TTL0 to
VI_TRIG_TTL7; VI_TRIG_ECL0
to VI_TRIG_ECL1*

* Agilent VISA can also return VI_TRIG_PANEL_IN (exception to the VISA Specification)

VI_EVENT_IO_COMPLETION
Notification that an asynchronous operation has completed.

Event Attribute Description AP Data Type Range

VI_ATTR_EVENT_TYPE Unique logical identifier of the
event.

RO ViEventType VI_EVENT_IO_COMPLETION
57

3 Programming with VISA
VI_ATTR_STATUS Return code of the asynchronous
I/O operation that has completed.

RO ViStatus N/A

VI_ATTR_JOB_ID Job ID of the asynchronous
operation that has completed.

RO ViJobId N/A

VI_ATTR_BUFFER Address of a buffer that was used in
an asynchronous operation.

RO ViBuf N/A

VI_ATTR_RET_COUNT Actual number of elements that
were asynchronously transferred.

RO ViUInt32 0 to FFFFFFFFh

VI_ATTR_OPER_NAME Name of the operation generating
the event.

ViString N/A

VI_EVENT_USB_INTR
Notification that a vendor-specific USB interrupt was received from the device.

Event Attribute Description AP Data Type Range

VI_ATTR_EVENT_TYPE Unique logical identifier of the
event.

RO ViEventType VI_EVENT_USB_INTR

VI_ATTR_USB_RECV_INTR_
SIZE

Specifies the size of the data that
was received from the USB
interrupt-IN pipe. This value will
never be larger than the sessions
value of VI_ATTR_USB_MAX_
INTR_SIZE.

RO ViUInt16 0 to FFFFh

VI_ATTR_USB_RECV_INTR
_DATA

Specifies the actual data that was
received from the USB interrupt-IN
pipe. Querying this attribute copies
the contents of the data to the users
buffer. The users buffer must be
sufficiently large enough to hold all
of the data.

RO ViBuf N/A

Table 16 Instrument Control (INSTR) Resource Events
58 Agilent VISA User’s Guide

Programming with VISA 3
VI_ATTR_STATUS Specifies the status of the read
operation from the USB interrupt-IN
pipe. If the device sent more data
than the user specified in
VI_ATTR_USB_MAX_INTR_SIZE,
then this attribute value will contain
an error code.

RO ViStatus N/A

Table 16 Instrument Control (INSTR) Resource Events
Agilent VISA User’s Guide
Table 17 Memory Access (MEMACC) Resource Event

VI_EVENT_IO_COMPLETION
Notification that an asynchronous operation has completed

Event Attribute Description AP Data Type Range

VI_ATTR_EVENT_TYPE Unique logical identifier of the
event.

RO ViEventType VI_EVENT_IO_COMPLETION

VI_ATTR_STATUS Return code of the asynchronous
I/O operation that has completed.

RO ViStatus N/A

VI_ATTR_JOB_ID Job ID of the asynchronous
operation that has completed.

RO ViJobId N/A

VI_ATTR_BUFFER Address of a buffer that was used in
an asynchronous operation.

RO ViBuf N/A

VI_ATTR_RET_COUNT Actual number of elements that
were asynchronously transferred.

RO ViUInt32 0 to FFFFFFFFh

VI_ATTR_OPER_NAME Name of the operation generating
the event.

RO ViString N/A
59

60

3 Programming with VISA
Table 18 GPIB Bus Interface (INTFC) Resource Events

VI_EVENT_GPIB_CIC
Notification that the GPIB controller has gained or lost CIC (controller in charge) status

Event Attribute Description AP Data Type Range

VI_ATTR_EVENT_TYPE Unique logical identifier of the
event.

RO ViEventType VI_EVENT_GPIB_CIC

VI_ATTR_GPIB_RECV_CIC_
STATE

Controller has become
controller-in-charge.

RO ViBoolean VI_TRUE
VI_FALSE

VI_EVENT_GPIB_TALK
Notification that the GPIB controller has been addressed to talk

Event Attribute Description AP Data Type Range

VI_ATTR_EVENT_TYPE Unique logical identifier of the
event.

RO ViEventType VI_EVENT_GPIB_TALK

VI_EVENT_GPIB_LISTEN
Notification that the GPIB controller has been addressed to listen.

Event Attribute Description AP Data Type Range

VI_ATTR_EVENT_TYPE Unique logical identifier of the
event.

RO ViEventType VI_EVENT_GPIB_LISTEN

VI_EVENT_CLEAR
Notification that the GPIB controller has been sent a device clear message.

Event Attribute Description AP Data Type Range

VI_ATTR_EVENT_TYPE Unique logical identifier of the
event.

RO ViEventType VI_EVENT_CLEAR

VI_EVENT_TRIGGER
Notification that a trigger interrupt was received from the interface.

Event Attribute Description AP Data Type Range
Agilent VISA User’s Guide

Programming with VISA 3
VI_ATTR_EVENT_TYPE Unique logical identifier of the
event.

RO ViEventType VI_EVENT_TRIG

VI_ATTR_RECV_TRIG_ID The identifier of the triggering
mechanism on which the
specified trigger event was
received.

RO ViInt16 VI_TRIG_SW

VI_EVENT_IO_COMPLETION
Notification that an asynchronous operation has completed.

Event Attribute Description AP Data Type Range

VI_ATTR_EVENT_TYPE Unique logical identifier of the
event.

RO ViEventType VI_EVENT_IO_
COMPLETION

VI_ATTR_STATUS Return code of the asynchronous
I/O operation that has completed.

RO ViStatus N/A

VI_ATTR_JOB_ID Job ID of the asynchronous
operation that has completed.

RO ViJobId N/A

VI_ATTR_BUFFER Address of buffer used in an
asynchronous operation.

RO ViBuf N/A

VI_ATTR_RET_COUNT Actual number of elements that
were asynchronously transferred.

RO ViUInt32 0 to FFFFFFFFh

VI_ATTR_OPER_NAME The name of the operation
generating the event.

RO ViString N/A

Table 19 VXI Mainframe Backplane (BACKPLANE) Resource Events

VI_EVENT_TRIG
Notification that a trigger interrupt was received from the backplane. For VISA, the only triggers that can
be sensed are VXI hardware triggers on the assertion edge (SYNC and ON trigger protocols only).

Event Attribute Description AP Data Type Range

VI_ATTR_EVENT_TYPE Unique logical identifier of the
event.

RO ViEventType VI_EVENT_TRIG

Table 18 GPIB Bus Interface (INTFC) Resource Events
Agilent VISA User’s Guide 61

3 Programming with VISA
VI_ATTR_RECV_TRIG_ID The identifier of the triggering
mechanism on which the specified
trigger event was received.

RO ViInt16 VI_TRIG_TTL0 to
VI_TRIG_TTL7; VI_TRIG_ECL0
to VI_TRIG_ECL1

VI_EVENT_VXI_VME_SYSFAIL
Notification that the VXI/VME SYSFAIL* line has been asserted.

VI_ATTR_EVENT_TYPE Unique logical identifier of the
event.

RO ViEventType VI_EVENT_VXI_VME_
SYSFAIL

VI_EVENT_VXI_VME_SYSRESET
Notification that the VXI/VME SYSRESET* line has been reset

Event Attributes Description AP Data Type Range

VI_ATTR_EVENT_TYPE Unique logical identifier of the
event.

RO ViEventType VI_EVENT_VXI_VME_
SYSRESET

Table 19 VXI Mainframe Backplane (BACKPLANE) Resource Events
62
Table 20 TCPIP Socket (SOCKET) Resource Event

VI_EVENT_IO_COMPLETION
Notification that an asynchronous operation has completed

Event Attribute Description AP Data Type Range

VI_ATTR_EVENT_TYPE Unique logical identifier of the
event.

RO ViEventType VI_EVENT_IO_COMPLETION

VI_ATTR_STATUS Return code of the asynchronous
I/O operation that has completed.

RO ViStatus N/A

VI_ATTR_JOB_ID Job ID of the asynchronous
operation that has completed.

RO ViJobId N/A

VI_ATTR_BUFFER Address of a buffer that was used in
an asynchronous operation.

RO ViBuf N/A

VI_ATTR_RET_COUNT Actual number of elements that
were asynchronously transferred.

RO ViUInt32 0 to FFFFFFFFh
Agilent VISA User’s Guide

Programming with VISA 3
VI_ATTR_OPER_NAME Name of the operation generating
the event.

RO ViString N/A

Table 20 TCPIP Socket (SOCKET) Resource Event
Agilent VISA User’s Guide
Sample: Reading Event Attributes

Once you have decided which attribute to check, you can
read the attribute using the viGetAttribute function. The
following sample shows one way you could check which
trigger line fired when the VI_EVENT_TRIG event was
delivered.

Note that the context parameter is either the event context
passed to your event handler, or the outcontext specified
when doing a wait on event. See “VISA Attributes” in this
chapter for more information on reading attribute states.

ViInt16 state;
.
.
viGetAttribute(context, VI_ATTR_RECV_TRIG_ID,
 &state)
Using the Callback Method
The callback method of event notification is used when an
immediate response to an event is required. To use the
callback method for receiving notification that an event has
occurred, you must do the following.

• Install an event handler with the viInstallHandler
function

• Enable one or several events with the viEnableEvent
function

When the enabled event occurs, the installed event handler
is called.

Sample: Using the Callback Method

This sample shows one way you can use the callback
method.
63

64

3 Programming with VISA
ViStatus _VI_FUNCH my_handler (ViSession vi,
 ViEventType eventType, ViEvent context, ViAddr
 usrHandle) {

/* your event handling code here */

return VI_SUCCESS;

}
main(){
ViSession vi;
ViAddr addr=0;
.
.
viInstallHandler(vi, VI_EVENT_SERVICE_REQ,
 my_handler, addr);
viEnableEvent(vi, VI_EVENT_SERVICE_REQ,
 VI_HNDLR, VI_NULL);
.
/* your code here */
.
viDisableEvent(vi, VI_EVENT_SERVICE_REQ,
 VI_HNDLR);
viUninstallHandler(vi, VI_EVENT_SERVICE_REQ,
 my_handler, addr);
.
}

Installing Handlers

VISA allows applications to install multiple handlers for an
event type on the same session. Multiple handlers can be
installed through multiple invocations of the
viInstallHandler operation, where each invocation adds to
the previous list of handlers.

If more than one handler is installed for an event type, each
of the handlers is invoked on every occurrence of the
specified event(s). VISA specifies that the handlers are
invoked in Last In First Out (LIFO) order. Use the following
function when installing an event handler:
Agilent VISA User’s Guide

Programming with VISA 3

Agilent VISA User’s Guide
viInstallHandler(vi, eventType, handler,
 userHandle);

These parameters are defined as follows.

The userHandle parameter allows you to assign a value to
be used with the handler on the specified session. Thus, you
can install the same handler for the same event type on
several sessions with different userHandle values. The same
handler is called for the specified event type.

However, the value passed to userHandle is different.
Therefore the handlers are uniquely identified by the
combination of the handler and the userHandle. This may
be useful when you need a different handling method
depending on the userHandle.

Sample: Installing an Event Handler

This sample shows how to install an event handler to call
my_handler when a Service Request occurs. Note that
VI_EVENT_SERVICE_REQ must also be an enabled event
with the viEnableEvent function for the service request
event to be delivered.

viInstallHandler(vi, VI_EVENT_SERVICE_REQ,
 my_handler, addr);

Table 21 Parameters Used to Install a Handler

Parameter Description

vi The session on which the handler will be installed.

eventType The event type that will activate the handler.

handler The name of the handler to be called.

userHandle A user value that uniquely identifies the handler for the
specified event type.
65

66

3 Programming with VISA
Use the viUninstallHandler function to uninstall a specific
handler, or you can use wildcards (VI_ANY_HNDLR in the
handler parameter) to uninstall groups of handlers. See
viUninstallHandler in the VISA Online Help for more details
on this function.

Writing the Handler

The handler installed needs to be written by the
programmer. The event handler typically reads an associated
attribute and performs some sort of action. See the event
handler in the sample program later in this section.

Enabling Events

Before an event can be delivered, it must be enabled using
the viEnableEvent function. This function causes the
application to be notified when the enabled event has
occurred, where the parameters are:

viEnableEvent(vi, eventType, mechanism,
 context);

Using VI_QUEUE in the mechanism parameter specifies a
queuing method for the events to be handled. If you use
both VI_QUEUE and one of the mechanisms listed above,
notification of events will be sent to both locations. See the
next subsection for information on the queuing method.

Table 22 Description of Parameters Used to Install a Handler

Parameter Description

vi The session on which the handler will be installed.

eventType The type of event to enable.
Agilent VISA User’s Guide

Programming with VISA 3

Agilent VISA User’s Guide
Sample: Enabling a Hardware Trigger Event

This sample illustrates enabling a hardware trigger event.

viInstallHandler(vi, VI_EVENT_TRIG,
 my_handler,&addr);
viEnableEvent(vi, VI_EVENT_TRIG, VI_HNDLR,
 VI_NULL);

The VI_HNDLR mechanism specifies that the handler
installed for VI_EVENT_TRIG will be called when a hardware
trigger occurs.

If you specify VI_ALL_ENABLE_EVENTS in the eventType
parameter, all events that have previously been enabled on
the specified session will be enabled for the mechanism
specified in this function call.

Use the viDisableEvent function to stop servicing the event
specified.

Sample: Trigger Callback

This sample program installs an event handler and enables
the trigger event. When the event occurs, the installed event
handler is called. This program is intended to show specific
VISA functionality and does not include error trapping.
Error trapping, however, is good programming practice and
is recommended in your VISA applications. See “Trapping
Errors” in this chapter for more information.

mechanism The mechanism by which the event will be enabled. It can be
enabled in several different ways. You can use VI_HNDLR in
this parameter to specify that the installed handler will be
called when the event occurs. Use VI_SUSPEND_HNDLR in
this parameter, which puts the events in a queue and waits to
call the installed handlers until viEnableEvent is called with
VI_HNDLR specified in the mechanism parameter. When
viEnableEvent is called with VI_HNDLR specified, the handler
for each queued event will be called.

context Not used in VISA 1.0. Use VI_NULL.

Table 22 Description of Parameters Used to Install a Handler
67

68

3 Programming with VISA
This sample program is installed on your system in the
ProgrammingSamples subdirectory. See the IO Libraries
Suite Online Help for locations of sample programs.

/* evnthdlr.c
This example program illustrates installing an
event handler to be called when a trigger
interrupt occurs. Note that you may need to
change the address. */

#include <visa.h>
#include <stdio.h>

/* trigger event handler */
ViStatus _VI_FUNCH myHdlr(ViSession vi,
 ViEventType eventType, ViEvent ctx, ViAddr
 userHdlr){
 ViInt16 trigId;

/* make sure it is a trigger event */
if(eventType!=VI_EVENT_TRIG){
 /* Stray event, so ignore */
 return VI_SUCCESS;
}

/* print the event information */
printf("Trigger Event Occurred!\n");
printf("...Original Device Session = %ld\n",
 vi);

/* get the trigger that fired */
viGetAttribute(ctx, VI_ATTR_RECV_TRIG_ID,
 &trigId);
printf("Trigger that fired: ");
switch(trigId){
 case VI_TRIG_TTL0:
 printf("TTL0");
 break;
 default:
 printf("<other 0x%x>", trigId);
 break;
}

printf("\n");
Agilent VISA User’s Guide

Programming with VISA 3

Agilent VISA User’s Guide
return VI_SUCCESS;
}

void main(){
ViSession defaultRM,vi;

/* open session to VXI device */
viOpenDefaultRM(&defaultRM);
viOpen(defaultRM, "VXI0::24::INSTR", VI_NULL,
 VI_NULL, &vi);

/* select trigger line TTL0 */
viSetAttribute(vi, VI_ATTR_TRIG_ID,
 VI_TRIG_TTL0);
/* install the handler and enable it */
viInstallHandler(vi, VI_EVENT_TRIG, myHdlr,
 (ViAddr)10);
viEnableEvent(vi, VI_EVENT_TRIG, VI_HNDLR,
 VI_NULL);
/* fire trigger line, twice */
viAssertTrigger(vi, VI_TRIG_PROT_SYNC);
viAssertTrigger(vi, VI_TRIG_PROT_SYNC);

/* unenable and uninstall the handler */
viDisableEvent(vi, VI_EVENT_TRIG, VI_HNDLR);

viUninstallHandler(vi, VI_EVENT_TRIG, myHdlr,
 (ViAddr)10);

/* close the sessions */
viClose(vi);
viClose(defaultRM);
}

Sample: SRQ Callback

This program installs an event handler and enables an SRQ
event. When the event occurs, the installed event handler is
called. This sample program is intended to show specific
VISA functionality and does not include error trapping.
Error trapping, however, is good programming practice and
is recommended in your VISA applications. See “Trapping
Errors” in this chapter for more information.
69

70

3 Programming with VISA
This program is installed on your system in the
ProgrammingSamples subdirectory. See the IO Libraries
Suite Online Help for locations of sample programs.

/* srqhdlr.c
This example program illustrates installing an
event handler to be called when an SRQ interrupt
occurs. Note that you may need to change the
address. */

#include <visa.h>
#include <stdio.h>
#if defined (_WIN32)
 #include <windows.h> /* for Sleep() */
 #define YIELD Sleep(10)

#elif defined (_WINDOWS)
 #include <io.h> /* for _wyield */
 #define YIELD _wyield()
#else
 #include <unistd.h>
 #define YIELD sleep (1)
#endif

int srqOccurred;

/* trigger event handler */
ViStatus _VI_FUNCH mySrqHdlr(ViSession vi,
 ViEventType
eventType, ViEvent ctx, ViAddr userHdlr){

 ViUInt16 statusByte;

 /* make sure it is an SRQ event */
 if(eventType!=VI_EVENT_SERVICE_REQ){
 /* Stray event, so ignore */
 printf("\nStray event of type 0x%lx\n",
 eventType);
 return VI_SUCCESS;
 }
Agilent VISA User’s Guide

Programming with VISA 3

Agilent VISA User’s Guide
 /* print the event information */
 printf("\nSRQ Event Occurred!\n");
 printf("...Original Device Session = %ld\n",
 vi);

 /* get the status byte */
 viReadSTB(vi, &statusByte);
 printf("...Status byte is 0x%x\n",
 statusByte);

 srqOccurred = 1;
 return VI_SUCCESS;
}

void main(){
 ViSession defaultRM,vi;
 long count;

 /* open session to message based VXI device */
 viOpenDefaultRM(&defaultRM);
 viOpen(defaultRM, "GPIB-VXI0::24::INSTR",
 VI_NULL, VI_NULL, &vi);

 /* Enable command error events */
 viPrintf(vi, "*ESE 32\n");

 /* Enable event register interrupts */
 viPrintf(vi, "*SRE 32\n");

 /* install the handler and enable it */
 viInstallHandler(vi, VI_EVENT_SERVICE_REQ,
 mySrqHdlr,
 (ViAddr)10);
 viEnableEvent(vi, VI_EVENT_SERVICE_REQ,
 VI_HNDLR, VI_NULL);

 srqOccurred = 0;

 /* Send a bogus command to the message-based
 device to cause an SRQ. Note: 'IDN' causes the
 error -- 'IDN?' is the correct syntax */
 viPrintf(vi, "IDN\n");
71

72

3 Programming with VISA
 /* Wait a while for the SRQ to be generated and
 for the handler to be called. Print something
 while we wait */

 printf("Waiting for an SRQ to be generated.");
 for (count = 0 ; (count < 10) &&
 (srqOccurred == 0);count++) {
 long count2 = 0;
 printf(".");
 while ((count2++ < 100) && (srqOccurred ==0)
){YIELD;
 }
 }
 printf("\n");

 /* disable and uninstall the handler */
 viDisableEvent(vi, VI_EVENT_SERVICE_REQ,
 VI_HNDLR);
 viUninstallHandler(vi, VI_EVENT_SERVICE_REQ,
 mySrqHdlr, (ViAddr)10);

 /* Clean up - do not leave device in error
 state */
 viPrintf(vi, "*CLS\n");

 /* close the sessions */
 viClose(vi);
 viClose(defaultRM);

 printf("End of program\n");}
Using the Queuing Method
The queuing method is generally used when an immediate
response from your application is not needed. To use the
queuing method for receiving notification that an event has
occurred, you must do the following:

• Enable one or several events with the viEnableEvent
function.

• When ready to query, use the viWaitOnEvent function to
check for queued events.
Agilent VISA User’s Guide

Programming with VISA 3

Agilent VISA User’s Guide
If the specified event has occurred, the event information is
retrieved and the program returns immediately. If the
specified event has not occurred, the program suspends
execution until a specified event occurs or until the specified
timeout period is reached.

Sample: Using the Queuing Method

This sample program shows one way you can use the
queuing method.

main();
ViSession vi;
ViEventType eventType;
ViEvent event;
.
.
viEnableEvent(vi, VI_EVENT_SERVICE_REQ,
 VI_QUEUE, VI_NULL);
.
.
viWaitOnEvent(vi, VI_EVENT_SERVICE_REQ,
 VI_TMO_INFINITE, &eventType, &event);
.
.
viClose(event);
viDisableEvent(vi, VI_EVENT_SERVICE_REQ,
 VI_QUEUE);
}

Enabling Events

Before an event can be delivered, it must be enabled using
the viEnableEvent function:

viEnableEvent(vi, eventType, mechanism,
 context);

These parameters are defined as follows:
73

74

3 Programming with VISA
When you use VI_QUEUE in the mechanism parameter, you
are specifying that the events will be put into a queue. Then,
when a viWaitOnEvent function is invoked, the program
execution will suspend until the enabled event occurs or the
timeout period specified is reached. If the event has already
occurred, the viWaitOnEvent function will return
immediately.

Sample: Enabling a Hardware Trigger Event

This sample illustrates enabling a hardware trigger event.

viEnableEvent(vi, VI_EVENT_TRIG, VI_QUEUE,
 VI_NULL);

The VI_QUEUE mechanism specifies that when an event
occurs, it will go into a queue. If you specify
VI_ALL_ENABLE_EVENTS in the eventType parameter, all
events that have previously been enabled on the specified
session will be enabled for the mechanism specified in this
function call. Use the viDisableEvent function to stop
servicing the event specified.

Wait on the Event

When using the viWaitOnEvent function, specify the session,
the event type to wait for, and the timeout period to wait:

viWaitOnEvent(vi, inEventType, timeout,
 outEventType, outContext);

Table 23 Descriptions of Parameters Used to Enable Events

Parameter Description

vi The session the handler will be installed on.

eventType The type of event to enable.

mechanism The mechanism by which the event will be enabled. Specify
VI_QUEUE to use the queuing method.

context Not used in VISA 1.0. Use VI_NULL.
Agilent VISA User’s Guide

Programming with VISA 3

Agilent VISA User’s Guide
The event must have previously been enabled with
VI_QUEUE specified as the mechanism parameter.

Sample: Wait on Event for SRQ

This sample shows how to install a wait on event for service
requests.

viEnableEvent(vi, VI_EVENT_SERVICE_REQ,
 VI_QUEUE, VI_NULL);
viWaitOnEvent(vi, VI_EVENT_SERVICE_REQ,
 VI_TMO_INFINITE, &eventType, &event);
.
.
viDisableEvent(vi, VI_EVENT_SERVICE_REQ,
 VI_QUEUE);

Every time a wait on event is invoked, an event context
object is created. Specifying VI_TMO_INFINITE in the
timeout parameter indicates that the program execution will
suspend indefinitely until the event occurs. To clear the
event queue for a specified event type, use the
viDiscardEvents function.

Sample: Trigger Event Queuing

This program enables the trigger event in a queuing mode.
When the viWaitOnEvent function is called, the program
will suspend operation until the trigger line is fired or the
timeout period is reached. Since the trigger lines were
already fired and the events were put into a queue, the
function will return and print the trigger line that fired.

This program is intended to show specific VISA functionality
and does not include error trapping. Error trapping,
however, is good programming practice and is recommended
in your VISA applications. See “Trapping Errors” in this
chapter for more information.

This sample program is installed on your system in the
ProgrammingSamples subdirectory. See the IO Libraries
Suite Online Help for locations of sample programs.
75

76

3 Programming with VISA
/* evntqueu.c
This sample program illustrates enabling an
event queue using viWaitOnEvent. Note that you
must change the device address. */

#include <visa.h>
#include <stdio.h>

void main(){
 ViSession defaultRM,vi;
 ViEventType eventType;
 ViEvent eventVi;
 ViStatus err;
 ViInt16 trigId;

 /* open session to VXI device */
 viOpenDefaultRM(&defaultRM);
 viOpen(defaultRM, "VXI0::24::INSTR", VI_NULL,
 VI_NULL, &vi);

 /* select trigger line TTL0 */
 viSetAttribute(vi, VI_ATTR_TRIG_ID,
 VI_TRIG_TTL0);

 /* enable the event */
 viEnableEvent(vi, VI_EVENT_TRIG, VI_QUEUE,
 VI_NULL);

 /* fire trigger line, twice */
 viAssertTrigger(vi, VI_TRIG_PROT_SYNC);
 viAssertTrigger(vi, VI_TRIG_PROT_SYNC);

 /* Wait for the event to occur */
 err=viWaitOnEvent(vi, VI_EVENT_TRIG, 10000,
 &eventType, &eventVi);
 if(err==VI_ERROR_TMO){
 printf("Timeout Occurred! Event not
 received.\n");
 return;
 }
Agilent VISA User’s Guide

Programming with VISA 3

Agilent VISA User’s Guide
 /* print the event information */
 printf("Trigger Event Occurred!\n");
 printf("...Original Device Session = %ld\n",
 vi);

 /* get trigger that fired */
 viGetAttribute(eventVi, VI_ATTR_RECV_TRIG_ID,
 &trigId);
 printf("Trigger that fired: ");
 switch(trigId){
 case VI_TRIG_TTL0:
 printf("TTL0");
 break;
 default:
 printf("<other 0x%x>",trigId);
 break;
 }
 printf("\n");

 /* close the context before continuing */
 viClose(eventVi);

 /* get second event */
 err=viWaitOnEvent(vi, VI_EVENT_TRIG, 10000,
 &eventType, &eventVi);
 if(err==VI_ERROR_TMO){
 printf("Timeout Occurred! Event not
 received.\n");
 return;
 }
 printf("Got second event\n");

 /* close the context before continuing */
 viClose(eventVi);

 /* disable event */
 viDisableEvent(vi, VI_EVENT_TRIG, VI_QUEUE);

 /* close the sessions */
 viClose(vi);
 viClose(defaultRM);
}

77

3 Programming with VISA
Trapping Errors
78
This section provides guidelines for trapping errors,
including:

• Trapping Errors

• Exception Events
Trapping Errors
The sample programs in this guide show specific VISA
functionality and do not include error trapping. Error
trapping, however, is good programming practice and is
recommended in all your VISA application programs. To trap
VISA errors you must check for VI_SUCCESS after each
VISA function call.

If you want to ignore WARNINGS, you can test to see if err
is less than (<) VI_SUCCESS. Since WARNINGS are greater
than VI_SUCCESS and ERRORS are less than VI_SUCCESS,
err_handler would only be called when the function returns
an ERROR. For example:

if(err < VI_SUCCESS) err_handler (vi, err);

Sample: Checking for VI_SUCCESS
This sample illustrates checking for VI_SUCCESS. If
VI_SUCCESS is not returned, an error handler (written by
the programmer) is called. This must be done with each
VISA function call.

ViStatus err;
.
.
err=viPrintf(vi, "*RST\n");
if (err < VI_SUCCESS) err_handler(vi, err);
.
.

Agilent VISA User’s Guide

Programming with VISA 3

Agilent VISA User’s Guide
Sample: Printing Error Code

The following error handler prints a user- readable string
describing the error code passed to the function:

void err_handler(ViSession vi, ViStatus err){

 char err_msg[1024]={0};
 viStatusDesc (vi, err, err_msg);
 printf ("ERROR = %s\n", err_msg);
 return;
}

Sample: Checking Instrument Errors

When programming instruments, it is good practice to check
the instrument to ensure there are no instrument errors
after each instrument function. This sample uses a SCPI
command to check a specific instrument for errors.

void system_err(){

 ViStatus err;
 char buf[1024]={0};
 int err_no;

 err=viPrintf(vi, "SYSTEM:ERR?\n");
 if (err < VI_SUCCESS) err_handler (vi, err);

 err=viScanf (vi, "%d%t", &err_no, &buf);
 if (err < VI_SUCCESS) err_handler (vi, err);

 while (err_no >0){
 printf ("Error Found: %d,%s\n", err_no,
 buf);
 err=viScanf (vi, "%d%t", &err_no, &buf);
 }
 err=viFlush(vi, VI_READ_BUF);
 if (err < VI_SUCCESS) err_handler (vi, err);

 err=viFlush(vi, VI_WRITE_BUF);
 if (err < VI_SUCCESS) err_handler (vi, err);
}

79

3 Programming with VISA
Exception Events
80
An alternative to trapping VISA errors by checking the
return status after each VISA call is to use the VISA
exception event. On sessions where an exception event
handler is installed and VI_EVENT_EXCEPTION is enabled,
the exception event handler is called whenever an error
occurs while executing an operation.

Exception Handling Model

The exception- handling model follows the event- handling
model for callbacks, and it uses the same operations as
those used for general event handling. For example, an
application calls viInstallHandler and viEnableEvent to
enable exception events. The exception event is like any
other event in VISA, except that the queueing and suspended
handler mechanisms are not allowed.

When an error occurs for a session operation, the exception
handler is executed synchronously. That is, the operation
that caused the exception blocks until the exception handler
completes its execution. The exception handler is executed
in the context of the same thread that caused the exception
event.

When invoked, the exception handler can check the error
condition and instruct the exception operation to take a
specific action. It can instruct the exception operation to
continue normally (by returning VI_SUCCESS) or to not
invoke any additional handlers in the case of handler
nesting (by returning VI_SUCCESS_NCHAIN).

As noted, an exception operation blocks until the exception
handler execution is completed. However, an exception
handler sometimes may prefer to terminate the program
prematurely without returning the control to the operation
generating the exception. VISA does not preclude an
application from using a platform- specific or
language- specific exception handling mechanism from within
the VISA exception handler.
Agilent VISA User’s Guide

Programming with VISA 3

Agilent VISA User’s Guide
For example, the C++ try/catch block can be used in an
application in conjunction with the C++ throw mechanism
from within the VISA exception handler. When using the C++
try/catch/throw or other exception- handling mechanisms, the
control will not return to the VISA system. This has several
important repercussions:

1 If multiple handlers were installed on the exception event,
the handlers that were not invoked prior to the current
handler will not be invoked for the current exception.

2 The exception context will not be deleted by the VISA
system when a C++ exception is used. In this case, the
application should delete the exception context as soon as
the application has no more use for the context, before
terminating the session. An application should use the
viClose operation to delete the exception context.

3 Code in any operation (after calling an exception handler)
may not be called if the handler does not return. For
example, local allocations must be freed before invoking
the exception handler, rather than after it.

One situation in which an exception event will not be
generated is in the case of asynchronous operations. If the
error is detected after the operation is posted (i.e., once the
asynchronous portion has begun), the status is returned
normally via the I/O completion event.

However, if an error occurs before the asynchronous portion
begins (i.e., the error is returned from the asynchronous
operation itself), then the exception event will still be raised.
This deviation is due to the fact that asynchronous
operations already raise an event when they complete, and
this I/O completion event may occur in the context of a
separate thread previously unknown to the application. In
summary, a single application event handler can easily
handle error conditions arising from both exception events
and failed asynchronous operations.
81

82

3 Programming with VISA
Using the VI_EVENT_EXCEPTION Event

You can use the VI_EVENT_EXCEPTION event as notification
that an error condition has occurred during an operation
invocation. The following table describes the
VI_EVENT_EXCEPTION event attributes.
Table 24 VI_EVENT_EXCEPTION Event Attributes.

Attribute Name Access Privilege Data Type Range Default

VI_ATTR_EVENT_TYPE RO Global ViEventType VI_EVENT_EXCEPTION N/A

VI_ATTR_STATUS RO Global ViStatus N/A N/A

VI_ATTR_OPER_NAME RO Global ViString N/A N/A
Sample: Exception Events

/* This is an example of how to use exception
events to trap VISA errors. An exception event
handler must be installed and exception events
enabled on all sessions where the exception
handler is used.*/

#include <stdio.h>
#include <visa.h>
ViStatus __stdcall myExceptionHandler (
 ViSession vi,
 ViEventType eventType,
 ViEvent context,
 ViAddr usrHandle
) {
 ViStatus exceptionErrNbr;
 char nameBuffer[256];
 ViString functionName = nameBuffer;
 char errStrBuffer[256];
 /* Get the error value from the exception
 context */
 viGetAttribute(context, VI_ATTR_STATUS,
 &exceptionErrNbr);
Agilent VISA User’s Guide

Programming with VISA 3

Agilent VISA User’s Guide
/* Get the function name from the exception
 context */
 viGetAttribute(context, VI_ATTR_OPER_NAME,
 functionName);
errStrBuffer[0] = 0;
 viStatusDesc(vi, exceptionErrNbr,
 errStrBuffer);

 printf("ERROR: Exception Handler reports\n"
 "(%s)\n","VISA function '%s' failed with
 error 0x%lx\n", "functionName,
 exceptionErrNbr, errStrBuffer);
 return VI_SUCCESS;
}
void main(){
 ViStatus status;
 ViSession drm;
 ViSession vi;
 ViAddr myUserHandle = 0;

 status = viOpenDefaultRM(&drm);
 if (status < VI_SUCCESS) {
 printf("ERROR: viOpenDefaultRM failed with
 error = 0x%lx\n", status);
 return;
 }

/* Install the exception handler and enable
 events for it */
 status = viInstallHandler(drm,
 VI_EVENT_EXCEPTION, myExceptionHandler,
 myUserHandle);
 if (status < VI_SUCCESS)
{
 printf("ERROR: viInstallHandler failed
 with error 0x%lx\n", status);
 }

status = viEnableEvent(drm, VI_EVENT_EXCEPTION,
 VI_HNDLR, VI_NULL);
if (status < VI_SUCCESS) {
83

84

3 Programming with VISA
 printf("ERROR: viEnableEvent failed with
 error 0x%lx\n", status);
 }

/* Generate an error to demonstrate that the
 handler will be called */
 status = viOpen(drm, "badVisaName", NULL,
 NULL, &vi);
 if (status < VI_SUCCESS) {

 printf("ERROR: viOpen failed with error
 0x%lx\n"
 "Exception Handler should have been
 called\n"
 "before this message was printed.\n",status
);
 }
}

Agilent VISA User’s Guide

Programming with VISA 3
Using Locks
Agilent VISA User’s Guide
In VISA, applications can open multiple sessions to a VISA
resource simultaneously. Applications can, therefore, access
a VISA resource concurrently through different sessions.
However, in certain cases, applications accessing a VISA
resource may want to restrict other applications from
accessing that resource.
Lock Functions
For example, when an application needs to perform
successive write operations on a resource, the application
may require that, during the sequence of writes, no other
operation can be invoked through any other session to that
resource. For such circumstances, VISA defines a locking
mechanism that restricts access to resources.

The VISA locking mechanism enforces arbitration of accesses
to VISA resources on a per- session basis. If a session locks a
resource, operations invoked on the resource through other
sessions either are serviced or are returned with an error,
depending on the operation and the type of lock used.

If a VISA resource is not locked by any of its sessions, all
sessions have full privilege to invoke any operation and
update any global attributes. Sessions are not required to
have locks to invoke operations or update global attributes.
However, if some other session has already locked the
resource, attempts to update global attributes or invoke
certain operations will fail.

See descriptions of the individual VISA functions in the
VISA Online Help to determine which would fail when a
resource is locked.
viLock/viUnlock Functions
The VISA viLock function is used to acquire a lock on a
resource.
85

86

3 Programming with VISA
viLock(vi, lockType, timeout, requestedKey,
 accessKey);

The VI_ATTR_RSRC_LOCK_STATE attribute specifies the
current locking state of the resource on the given session,
which can be either VI_NO_LOCK, VI_EXCLUSIVE_LOCK, or
VI_SHARED_LOCK.

The VISA viUnlock function is then used to release the lock
on a resource. If a resource is locked and the current
session does not have the lock, the error
VI_ERROR_RSRC_LOCKED is returned.
VISA Lock Types
VISA defines two different types of locks: Exclusive Lock
and Shared Lock.

Exclusive Lock - A session can lock a VISA resource
using the lock type VI_EXCLUSIVE_LOCK to get exclusive
access privileges to the resource. This exclusive lock type
excludes access to the resource from all other sessions.

If a session has an exclusive lock, other sessions cannot
modify global attributes or invoke operations on the
resource. However, the other sessions can still get
attributes.

Shared Lock - A session can share a lock on a VISA
resource with other sessions by using the lock type
VI_SHARED_LOCK. Shared locks in VISA are similar to
exclusive locks in terms of access privileges, but can still
be shared between multiple sessions.

If a session has a shared lock, other sessions that share
the lock can also modify global attributes and invoke
operations on the resource (of course, unless some other
session has a previous exclusive lock on that resource). A
session that does not share the lock will lack these
capabilities.

Locking a resource restricts access from other sessions, and
in the case where an exclusive lock is acquired, ensures that
operations do not fail because other sessions have acquired
Agilent VISA User’s Guide

Programming with VISA 3

Agilent VISA User’s Guide
a lock on that resource. Thus, locking a resource prevents
other, subsequent sessions from acquiring an exclusive lock
on that resource. Yet, when multiple sessions have acquired
a shared lock, VISA allows one of the sessions to acquire an
exclusive lock along with the shared lock it is holding.

Also, VISA supports nested locking. That is, a session can
lock the same VISA resource multiple times (for the same
lock type) via multiple invocations of the viLock function. In
such a case, unlocking the resource requires an equal
number of invocations of the viUnlock function. Nested
locking is explained in detail later in this section.

Some VISA operations may be permitted even when there is
an exclusive lock on a resource, or some global attributes
may not be read when there is any kind of lock on the
resource. These exceptions, when applicable, are mentioned
in the descriptions of the individual VISA functions and
attributes.

See the VISA Online Help for descriptions of individual
functions to determine which are applicable for locking and
which are not restricted by locking.

Sample: Exclusive Lock

This sample shows a session gaining an exclusive lock to
perform the viPrintf and viScanf VISA operations on a GPIB
device. It then releases the lock via the viUnlock function.

/* lockexcl.c
This example program queries a GPIB device for
an identification string and prints the results.
Note that you may need to change the address. */

#include <visa.h>
#include <stdio.h>

void main () {

 ViSession defaultRM, vi;
 char buf [256] = {0};
87

88

3 Programming with VISA
 /* Open session to GPIB device at address 22 */
 viOpenDefaultRM (&defaultRM);
 viOpen (defaultRM, "GPIB0::22::INSTR",
 VI_NULL,VI_NULL, &vi);

 /* Initialize device */
 viPrintf (vi, "*RST\n");

 /* Make sure no other process or thread does
 anything to this resource between viPrintf and
 viScanf calls */

 viLock (vi, VI_EXCLUSIVE_LOCK, 2000, VI_NULL,
 VI_NULL);

 /* Send an *IDN? string to the device */
 viPrintf (vi, "*IDN?\n");

 /* Read results */
 viScanf (vi, "%t", &buf);

 /* Unlock this session so other processes and
 threads can use it */
 viUnlock (vi);

 /* Print results */
 printf ("Instrument identification string:
 %s\n", buf);

 /* Close session */
 viClose (vi);
 viClose (defaultRM);}

Sample: Shared Lock

This sample shows a session gaining a shared lock with the
accessKey called lockkey. Other sessions can now use this
accessKey in the requestedKey parameter of the viLock
function to share access on the locked resource. This sample
then shows the original session acquiring an exclusive lock
while maintaining its shared lock.
Agilent VISA User’s Guide

Programming with VISA 3

Agilent VISA User’s Guide
When the session holding the exclusive lock unlocks the
resource via the viUnlock function, all the sessions sharing
the lock again have all the access privileges associated with
the shared lock.

/* lockshr.c
This example program queries a GPIB device for
an identification string and prints the results.
Note that you must change the address. */

#include <visa.h>
#include <stdio.h>

void main () {

 ViSession defaultRM, vi;
 char buf [256] = {0};
 char lockkey [256] = {0};

 /* Open session to GPIB device at address 22 */
 viOpenDefaultRM (&defaultRM);
 viOpen (defaultRM, "GPIB0::22::INSTR",
 VI_NULL,VI_NULL,&vi);

 /* acquire a shared lock so only this process
 and processes that we know about can access
 this resource */
 viLock (vi, VI_SHARED_LOCK, 2000, VI_NULL,
 lockkey);

 /* at this time, we can make 'lockkey'
 available to other processes that we know
 about. This can be done with shared memory or
 other inter-process communication methods.
 These other processes can then call
 "viLock(vi,VI_SHARED_LOCK, 2000, lockkey,
 lockkey)" and they will also have access to
 this resource. */

 /* Initialize device */
 viPrintf (vi, "*RST\n");
89

90

3 Programming with VISA
 /* Make sure no other process or thread does
 anything to this resource between the
 viPrintf() and the viScanf()calls Note: this
 also locks out the processes with which we
 shared our 'shared lock' key. */

 viLock (vi, VI_EXCLUSIVE_LOCK, 2000,
 VI_NULL,VI_NULL);

 /* Send an *IDN? string to the device */
 viPrintf (vi, "*IDN?\n");

 /* Read results */
 viScanf (vi, "%t", &buf);

 /* unlock this session so other processes and
 threads can use it */
 viUnlock (vi);

 /* Print results */
 printf ("Instrument identification string:
 %s\n", buf);

 /* release the shared lock also*/
 viUnlock (vi);

 /* Close session */
 viClose (vi);
 viClose (defaultRM);
}

Agilent VISA User’s Guide

Agilent IO Libraries Suite
Agilent VISA User’s Guide
4
Programming via GPIB and VXI

VISA supports three interfaces you can use to access GPIB
(General Purpose Interface Bus) and VXI (VME eXtension for
Instrumentation) instruments: GPIB, VXI, and GPIB- VXI.

This chapter provides information to program GPIB and VXI
devices via the GPIB, VXI or GPIB-VXI interfaces, including:

• GPIB and VXI Interfaces Overview

• Using High- Level Memory Functions

• Using Low- Level Memory Functions

• Using High/Low- Level Memory I/O Methods

• Using the Memory Access Resource

• Using VXI- Specific Attributes

See Chapter 3, “Programming with VISA”, for general
information on VISA programming for the GPIB, VXI, and
GPIB- VXI interfaces. See the VISA Online Help for
information on the specific VISA functions.
91Agilent Technologies

4 Programming via GPIB and VXI
GPIB and VXI Interfaces Overview
92
This section provides an overview of the GPIB, GPIB- VXI,
and VXI interfaces, including:

• General Interface Information

• GPIB Interfaces Overview

• VXI Interfaces Overview
General Interface Information
VISA supports three interfaces you can use to access
instruments or devices: GPIB, VXI, and GPIB-VXI. The GPIB
interface can be used to access VXI instruments via a
Command Module. In addition, the VXI backplane can be
directly accessed with the VXI or GPIB-VXI interfaces.

What is an I/O Interface?

An I/O interface can be defined as both a hardware
interface and as a software interface. Connection Expert is
used to associate a unique interface name with a hardware
interface. Agilent IO Libraries Suite uses a VISA interface
name to identify an interface. This information is passed in
the parameter string of the viOpen function call in a VISA
program.

Connection Expert assigns a VISA interface name to the
interface hardware, and other necessary configuration values
for an interface when the interface is configured. See the
Agilent IO Libraries Suite Online Help for details.

VXI Device Types

When using GPIB-VXI or VXI interfaces to directly access
the VXI backplane (in the VXI mainframe), you must know
whether you are programming a message- based or a
register- based VXI device (instrument).

A message- based VXI device has its own processor that
allows it to interpret high- level commands such as Standard
Commands for Programmable Instruments (SCPI). When
Agilent VISA User’s Guide

Programming via GPIB and VXI 4

Agilent VISA User’s Guide
using VISA, you can place the SCPI command within your
VISA output function call. Then, the message- based device
interprets the SCPI command. In this case you can use the
VISA formatted I/O or non- formatted I/O functions and
program the message- based device as you would a GPIB
device.

However, if the message- based device has shared memory,
you can access the device's shared memory by doing register
peeks and pokes. VISA provides two different methods you
can use to program directly to the registers: high- level
memory functions or low- level memory functions.

A register- based VXI device typically does not have a
processor to interpret high- level commands. Therefore, the
device must be programmed with register peeks and pokes
directly to the device's registers. VISA provides two different
methods you can use to program register- based devices:
high- level memory functions or low- level memory functions.
GPIB Interfaces Overview
As shown in the following figure, a typical GPIB interface
consists of a Windows PC with one or more GPIB cards (PCI
and/or ISA) cards installed in the PC, and one or more
GPIB instruments connected to the GPIB cards via GPIB
cable. I/O communication between the PC and the
instruments is via the GPIB cards and the GPIB cable. The
following figure shows GPIB instruments at addresses 3 and
5.
93

94

4 Programming via GPIB and VXI
Example: GPIB (82350) Interface

The GPIB interface system in the following figure consists of
a Windows PC with two 82350 GPIB cards connected to
three GPIB instruments via GPIB cables. For this system,
Agilent Connection Expert has been used to assign GPIB
card #1 a VISA name of GPIB0 and to assign GPIB card #2 a
VISA name of GPIB1. VISA addressing is as shown in the
figure.

5

82350 GPIB Card #1

Windows PC

3

3

GPIB InstrumentsGPIB Cable

82350 GPIB Card #2

GPIB Interface (82350 PCI GPIB Cards)
Agilent VISA User’s Guide

Programming via GPIB and VXI 4

Agilent VISA User’s Guide
.

5

82350 GPIB Card #1

Windows PC

3

3

GPIB InstrumentsGPIB CableInterface VISA Names

82350 GPIB Card #2

VISA Name

 "GPIB0"

 "GPIB1"

VISA Addressing

viOpen (... "GPIB0::5::INSTR"...)
viOpen (... "GPIB0::3::INSTR"...)
viOpen (... "GPIB1::3::INSTR"...)

GPIB Interface (82350 PCI GPIB Cards)

Open IO path to GPIB instrument at address 5 using 82350 Card #1
Open IO path to GPIB instrument at address 3 using 82350 Card #1
Open IO path to GPIB instrument at address 3 using 82350 Card #2
95

4 Programming via GPIB and VXI
VXI Interfaces Overview
96
As shown in the following figure, a typical VXI (E8491)
interface consists of an E8491 PC Card in a Windows PC
that is connected to an E8491B IEEE- 1394 Module in a VXI
mainframe via an IEEE- 1394 to VXI cable. The VXI
mainframe also includes one or more VXI instruments.
Windows PC

VXI (E8491) Interfaces

VXI Mainframe

. . .

E
8
4
9
1
B

V
X
I

I
n
s
t
r

V
X
I

I
n
s
t
r

V
X
I

I
n
s
t
r

. .
E8491 PC Card

IEEE-1394
to VXI
Example: VXI (E8491B) Interfaces

The VXI interface system in the following figure consists of a
Windows PC with an E8491 PC card that connects to an
E8491B IEEE- 1394 to VXI Module in a VXI Mainframe. For
this system, the three VXI instruments shown have logical
addresses 8, 16, and 24. The Connection Expert utility has
been used to assign the E8491 PC card a VISA name of VXI0.
VISA addressing is as shown in the figure.

For information on the E8491B module, see the Agilent
E8491B User’s Guide. For information on VXI instruments,
see the applicable VXI instrument User’s Guide.
Agilent VISA User’s Guide

Programming via GPIB and VXI 4

Agilent VISA User’s Guide
GPIB-VXI Interfaces Overview

E8491 PC Card

Windows PC

. . .

Interface VISA Name

VISA Name

"VXI0"

VISA Addressing

viOpen (... "VXI0::24::INSTR"...)

VXI Interface (E8491B IEEE-1394 to VXI Module)

Open IO path to VXI instrument at logical address 24 using
E8491 PC Card and E8491 IEEE-1394 to VXI Module

E
8
4
9
1
B

V
X
I

I
n
s
t
r

V
X
I

I
n
s
t
r

V
X
I

I
n
s
t
r

. .

VXI MainframeIEEE-1394 to VXI

LA 8 LA 24 LA 16
As shown in the following figure, a typical GPIB-VXI
interface consists of a GPIB card (82350 or equivalent) in a
Windows PC that is connected via a GPIB cable to an
E1406A Command Module. The E1406A sends commands to
the VXI instruments in a VXI mainframe. There is no direct
access to the VXI backplane from the PC.
97

98

4 Programming via GPIB and VXI
.

NOTE For a GPIB-VXI interface, VISA uses a DLL supplied by the Command
Module vendor to translate the VISA VXI calls to Command Module
commands that are vendor-specific. The DLL required for Agilent
Command Modules is installed by the Agilent IO Libraries Suite installer.
This DLL is installed by default when Agilent VISA is installed.

GPIB Card

Windows PC

. . .

GPIB-VXI (E1406A) Interfaces

E
1
4
0
6
A

V
X
I

I
n
s
t
r

V
X
I

I
n
s
t
r

V
X
I

I
n
s
t
r

. .

VXI MainframeGPIB
Example: GPIB-VXI (E1406A) Interface

The GPIB-VXI interface system in the following figure
consists of a Windows PC with an Agilent 82350 GPIB card
that connects to an E1406A command module in a VXI
mainframe. The VXI mainframe includes one or more VXI
instruments.

When Agilent IO Libraries Suite was installed, a GPIB-VXI
driver with GPIB address 9 was also installed, and the
E1406A was configured for primary address 9 and logical
address (LA) 0. The three VXI instruments shown have
logical addresses 8, 16, and 24.
Agilent VISA User’s Guide

Programming via GPIB and VXI 4

Agilent VISA User’s Guide
The Connection Expert utility has been used to assign the
GPIB- VXI driver a VISA name of GPIB-VXI0 and to assign the
82350 GPIB card a VISA name of GPIB0. VISA addressing is
as shown in the figure.

For information on the E1406A Command Module, see the
Agilent E1406A Command Module User’s Guide. For
information on VXI instruments, see the applicable
instrument’s User’s Guide.
82350 GPIB Card

Windows PC

. . .

Interface VISA Name

VISA Name

"GPIB-VXI0"

"GPIB0"

VISA Addressing

viOpen (... "GPIB-VXI0::24::INSTR"...)

GPIB-VXI Interface (E1406A Command Module)

Open IO path to VXI instrument at logical address 24 using
82350 GPIB Card and E1406A VXI Command Module at
GPIB primary address 9

E
1
4
0
6
A

V
X
I

I
n
s
t
r

V
X
I

I
n
s
t
r

V
X
I

I
n
s
t
r

. .

VXI Mainframe

GPIB

GPIB-VXI Driver
GPIB Address 9 Primary

Address 9

LA 0 LA 8 LA 24 LA 16
99

4 Programming via GPIB and VXI
Using High-Level Memory Functions
100
High- level memory functions allow you to access memory on
the interface through simple function calls. There is no need
to map memory to a window. Instead, when high- level
memory functions are used, memory mapping and direct
register access are automatically done.

The trade- off, however, is speed. High- level memory
functions are easier to use. However, since these functions
encompass mapping of memory space and direct register
access, the associated overhead slows program execution
time. If speed is required, use the low- level memory
functions discussed in “Using Low- Level Memory Functions”
on page 106.
Programming the Registers
High- level memory functions include the viIn and viOut
functions for transferring 8- , 16- , or 32- bit values, as well as
the viMoveIn and viMoveOut functions for transferring 8- ,
16- , or 32- bit blocks of data into or out of local memory.
You can therefore program using 8- , 16- , or 32- bit transfers.

High-Level Memory Functions

This table summarizes the high- level memory functions.

Table 25 Summary of High-Level Memory Functions

Function Description

viIn8(vi, space, offset, val8); Reads 8 bits of data from the specified
offset.

viIn16(vi, space, offset, val16); Reads 16 bits of data from the specified
offset.

viIn32(vi, space, offset, val32); Reads 32 bits of data from the specified
offset.

viOut8(vi, space, offset, val8); Writes 8 bits of data to the specified offset.
Agilent VISA User’s Guide

Programming via GPIB and VXI 4

Agilent VISA User’s Guide
Using viIn and viOut
When using the viIn and viOut high- level memory functions
to program to the device registers, all you need to specify is
the session identifier, address space, and the offset of the
register. Memory mapping is done for you. For example, in
this function:

viIn32(vi, space, offset, val32);

vi is the session identifier and offset is used to indicate the
offset of the memory to be mapped. offset is relative to the
location of this device's memory in the given address space.
The space parameter determines which memory location to
map the space. Valid space values are:

• VI_A16_SPACE - Maps in VXI/MXI A16 address space

• VI_A24_SPACE - Maps in VXI/MXI A24 address space

• VI_A32_SPACE - Maps in VXI/MXI A32 address space

viOut16(vi, space, offset, val16); Writes 16 bits of data to the specified
offset.

viOut32(vi, space, offset, val32); Writes 32 bits of data to the specified
offset.

viMoveIn8(vi, space, offset,
length, buf8);

Moves an 8-bit block of data from the
specified offset to local memory.

viMoveIn16(vi, space, offset,
length, buf16);

Moves a 16-bit block of data from the
specified offset to local memory.

viMoveIn32(vi, space, offset,
length, buf32);

Moves a 32-bit block of data from the
specified offset to local memory.

viMoveOut8(vi, space, offset,
length, buf8);

Moves an 8-bit block of data from local
memory to the specified offset.

viMoveOut16(vi, space, offset,
length, buf16);

Moves a 16-bit block of data from local
memory to the specified offset.

viMoveOut32(vi, space, offset,
length, buf32);

Moves a 32-bit block of data from local
memory to the specified offset.

Table 25 Summary of High-Level Memory Functions
101

102

4 Programming via GPIB and VXI
The val32 parameter is a pointer to where the data read will
be stored. If instead you write to the registers via the
viOut32 function, the val32 parameter is a pointer to the
data to write to the specified registers. If the device
specified by vi does not have memory in the specified
address space, an error is returned. The following code
sample uses viIn16.

ViSession defaultRM, vi;
ViUInt16 value;
.
viOpenDefaultRM(&&defaultRM);
viOpen(defaultRM, "VXI::24", VI_NULL, VI_NULL,
&vi);
viIn16(vi, VI_A16_SPACE, 0x100, &value);

Using viMoveIn and viMoveOut
You can also use the viMoveIn and viMoveOut high- level
memory functions to move blocks of data to or from local
memory. Specifically, the viMoveIn function moves an 8- ,
16- , or 32- bit block of data from the specified offset to local
memory, and the viMoveOut functions moves an 8- , 16- , or
32- bit block of data from local memory to the specified
offset. Again, the memory mapping is done for you.

For example, in this function:

viMoveIn32(vi, space, offset, length, buf32);

vi is the session identifier and offset is used to indicate the
offset of the memory to be mapped. offset is relative to the
location of this device's memory in the given address space.
The space parameter determines which memory location to
map the space and the length parameter specifies the
number of elements to transfer (8- , 16- , or 32- bits).

The buf32 parameter is a pointer to where the data read will
be stored. If instead you write to the registers via the
viMoveOut32 function, the buf32 parameter is a pointer to
the data to write to the specified registers.
Agilent VISA User’s Guide

Programming via GPIB and VXI 4
High-Level Memory Functions: Sample Programs
Agilent VISA User’s Guide
Two sample programs follow that use the high- level memory
functions to read the ID and Device Type registers of a
device at the VXI logical address 24. The contents of the
registers are then printed out.

The first program uses the VXI interface; the second
program accesses the backplane with the GPIB- VXI interface.
These two programs are identical except for the string
passed to viOpen.

Sample: Using VXI Interface (High-Level) Memory Functions

This program uses high- level memory functions and the VXI
interface to read the ID and Device Type registers of a
device at VXI0::24.

/* vxihl.c
This example program uses the high-level memory
functions to read the id and device type
registers of the device at VXI0::24. Change this
address if necessary. The register contents are
then displayed.*/

#include <visa.h>
#include <stdlib.h>
#include <stdio.h>

void main () {

 ViSession defaultRM, dmm;
 unsigned short id_reg, devtype_reg;

 /* Open session to VXI device at address 24 */
 viOpenDefaultRM(&defaultRM);
 viOpen(defaultRM, "VXI0::24::INSTR", VI_NULL,
 VI_NULL, &dmm);

 /* Read instrument id register contents */
 viIn16(dmm, VI_A16_SPACE, 0x00, &id_reg);
103

104

4 Programming via GPIB and VXI
Sample: Using GPIB-VXI Interface (High-Level) Memory
Functions

This program uses high- level memory functions and the
GPIB- VXI interface to read the ID and Device Type registers
of a device at GPIB- VXI0::24.

 /* Read device type register contents */
 viIn16(dmm, VI_A16_SPACE, 0x02,
 &devtype_reg);

 /* Print results */
 printf ("ID Register = 0x%4X\n", id_reg);
 printf ("Device Type Register = 0x%4X\n",
 devtype_reg);

 /* Close sessions */
 viClose(dmm);
 viClose(defaultRM);
}

/*gpibvxih.c
This example program uses the high-level memory
functions to read the id and device type
registers of the device at GPIB-VXI0::24. Change
this address if necessary. The register
contents are then displayed.*/

#include <visa.h>
#include <stdlib.h>
#include <stdio.h>

void main ()
 {
 ViSession defaultRM, dmm;
 unsigned short id_reg, devtype_reg;

 /* Open session to VXI device at address 24 */
 viOpenDefaultRM(&defaultRM);
 viOpen(defaultRM, "GPIB-VXI0::24::INSTR",
 VI_NULL,VI_NULL, &dmm);
Agilent VISA User’s Guide

Programming via GPIB and VXI 4

Agilent VISA User’s Guide

 /* Read instrument id register contents */
 viIn16(dmm, VI_A16_SPACE, 0x00, &id_reg);

 /* Read device type register contents */
 viIn16(dmm, VI_A16_SPACE, 0x02,
 &devtype_reg);

 /* Print results */
 printf ("ID Register = 0x%4X\n", id_reg);
 printf ("Device Type Register = 0x%4X\n",
 devtype_reg);

 /* Close sessions */
 viClose(dmm);
 viClose(defaultRM);
 }
105

4 Programming via GPIB and VXI
Using Low-Level Memory Functions
106
Low- level memory functions allow direct access to memory
on the interface just as do high- level memory functions.
However, with low- level memory function calls, you must
map a range of addresses and directly access the registers
with low- level memory functions, such as viPeek32 and
viPoke32.

There is more programming effort required when using
low- level memory functions. However, the program execution
speed can increase. Additionally, to increase program
execution speed, the low- level memory functions do not
return error codes.
Programming the Registers
When using the low- level memory functions for direct
register access, you must first map a range of addresses
using the viMapAddress function. Next, you can send a
series of peeks and pokes using the viPeek and viPoke
low- level memory functions. Then, you must free the address
window using the viUnmapAddress function. A process you
could use is:

1 Map memory space using viMapAddress.

2 Read and write to the register's contents using viPeek32
and viPoke32.

3 Unmap the memory space using viUnmapAddress.

Low-Level Memory Functions

You can program the registers using low- level functions for
8- , 16- , or 32- bit transfers. This table summarizes the
low- level memory functions.

Table 26 Summary of Low-Level Memory Functions

Function Description
Agilent VISA User’s Guide

Programming via GPIB and VXI 4

Agilent VISA User’s Guide
Mapping Memory Space

When using VISA to access the device's registers, you must
map memory space into your process space. For a given
session, you can have only one map at a time. To map space
into your process, use the VISA viMapAddress function:

viMapAddress(vi, mapSpace, mapBase, mapSize,
access, suggested, address);

This function maps space for the device specified by the vi
session. mapBase, mapSize, and suggested are used to
indicate the offset of the memory to be mapped, amount of
memory to map, and a suggested starting location,
respectively. mapSpace determines which memory location
to map the space. The following are valid mapSpace choices:

VI_A16_SPACE - Maps in VXI/MXI A16 address space

VI_A24_SPACE - Maps in VXI/MXI A24 address space

VI_A32_SPACE - Maps in VXI/MXI A32 address space

viMapAddress(vi, mapSpace,
mapBase, mapSize, access,
suggested, address);

Maps the specified memory space.

viPeek8(vi, addr, val8); Reads 8 bits of data from address specified.

viPeek16(vi, addr, val16); Reads 16 bits of data from address specified.

viPeek32(vi, addr, val32); Reads 32 bits of data from address specified.

viPoke8(vi, addr, val8); Writes 8 bits of data to address specified.

viPoke16(vi, addr, val16); Writes 16 bits of data to address specified.

viPoke32(vi, addr, val32); Writes 32 bits of data to address specified.

viUnmapAddress(vi); Unmaps memory space previously mapped.

Table 26 Summary of Low-Level Memory Functions
107

108

4 Programming via GPIB and VXI
A pointer to the address space where the memory was
mapped is returned in the address parameter. If the device
specified by vi does not have memory in the specified
address space, an error is returned. Some sample
viMapAddress function calls follow.

/* Maps to A32 address space */
viMapAddress(vi, VI_A32_SPACE, 0x000, 0x100,
VI_FALSE,
 VI_NULL,&address);

/* Maps to A24 address space */
viMapAddress(vi, VI_A24_SPACE, 0x00, 0x80,
VI_FALSE,
 VI_NULL,&address);

Reading and Writing to Device Registers

When you have mapped the memory space, use the VISA
low- level memory functions to access the device's registers.
First, determine which device register you need to access.
Then, you need to know the register's offset. See the
applicable instrument’s user manual for a description of the
registers and register locations. You can then use this
information and the VISA low- level functions to access the
device registers.

Sample: Using viPeek16
A code sample using viPeek16 follows.

ViSession defaultRM, vi;
ViUInt16 value;
ViAddr address;
ViUInt16 value;
.
.
viOpenDefaultRM(&&defaultRM);
viOpen(defaultRM, "VXI::24::INSTR", VI_NULL,
VI_NULL,
 &vi);
viMapAddress(vi, VI_A16_SPACE, 0x00, 0x04,
Agilent VISA User’s Guide

Programming via GPIB and VXI 4

Agilent VISA User’s Guide
VI_FALSE,
 VI_NULL, &address);
viPeek16(vi, addr, &value)

Unmapping Memory Space

Make sure you use the viUnmapAddress function to unmap
the memory space when it is no longer needed. Unmapping
memory space makes the window available for the system to
reallocate.
Low-Level Memory Functions: Code Samples
Two sample programs follow that use the low- level memory
functions to read the ID and Device Type registers of the
device at VXI logical address 24. The contents of the
registers are then printed out. The first program uses the
VXI interface and the second program uses the GPIB-VXI
interface to access the VXI backplane. These two programs
are identical except for the string passed to viOpen.

Sample: Using the VXI Interface (Low-Level) Memory Functions

This program uses low- level memory functions and the VXI
interface to read the ID and Device Type registers of a
device at VXI0::24.

/*vxill.c
This example program uses the low-level memory
functions to read the id and device type
registers of the device at VXI0::24. Change this
address if necessary. The register contents are
then displayed.*/

#include <visa.h>
#include <stdlib.h>
#include <stdio.h>

void main () {

 ViSession defaultRM, dmm;
 ViAddr address;
 unsigned short id_reg, devtype_reg;
109

110

4 Programming via GPIB and VXI
 /* Open session to VXI device at address 24 */
 viOpenDefaultRM(&defaultRM);
 viOpen(defaultRM, "VXI0::24::INSTR", VI_NULL,
 VI_NULL, &dmm);

 /* Map into memory space */
 viMapAddress(dmm, VI_A16_SPACE, 0x00, 0x10,
 VI_FALSE,VI_NULL, &address);

 /* Read instrument id register contents */
 viPeek16(dmm, address, &id_reg);

 /* Read device type register contents */
 /* ViAddr is defined as a void so we must cast
 /* it to something else to do pointer
 arithmetic */
 viPeek16(dmm, (ViAddr)((ViUInt16 *)address +
 0x01),
 &devtype_reg);

 /* Unmap memory space */
 viUnmapAddress(dmm);

 /* Print results */
 printf ("ID Register = 0x%4X\n", id_reg);
 printf ("Device Type Register = 0x%4X\n",
 devtype_reg);

 /* Close sessions */
 viClose(dmm);
 viClose(defaultRM);
 }

Sample: Using the GPIB-VXI Interface (Low-Level) Memory
Functions

This program uses low- level memory functions and the
GPIB- VXI interface to read the ID and Device Type registers
of a device at GPIB- VXI0::24.

/*gpibvxil.c
This example program uses the low-level memory
functions to read the id and device type
Agilent VISA User’s Guide

Programming via GPIB and VXI 4

Agilent VISA User’s Guide
registers of the device at GPIB-VXI0::24. Change
this address if necessary. Register contents are
then displayed.*/

#include <visa.h>
#include <stdlib.h>
#include <stdio.h>

void main () {

 ViSession defaultRM, dmm;
 ViAddr address;
 unsigned short id_reg, devtype_reg;

 /* Open session to VXI device at address 24 */
 viOpenDefaultRM(&defaultRM);
 viOpen(defaultRM, "GPIB-VXI0::24::INSTR",
 VI_NULL,
 VI_NULL,&dmm);

 /* Map into memory space */
 viMapAddress(dmm, VI_A16_SPACE, 0x00, 0x10,
 VI_FALSE,
 VI_NULL, &address);

 /* Read instrument id register contents */
 viPeek16(dmm, address, &id_reg);

 /* Read device type register contents */
 /* ViAddr is defined as a void so we must
 cast it to something else to do pointer
 arithmetic */
 viPeek16(dmm, (ViAddr)((ViUInt16 *)address +
 0x01),
 &devtype_reg);

 /* Unmap memory space */
 viUnmapAddress(dmm);

 /* Print results */
 printf ("ID Register = 0x%4X\n", id_reg);
 printf ("Device Type Register = 0x%4X\n",
 devtype_reg);
111

112

4 Programming via GPIB and VXI
 /* Close sessions */
 viClose(dmm);
 viClose(defaultRM);
 }
Agilent VISA User’s Guide

Programming via GPIB and VXI 4
Using Low/High-Level Memory I/O Methods
Agilent VISA User’s Guide
VISA supports three different memory I/O methods for
accessing memory on the VXI backplane, as shown. All three
of these access methods can be used to read and write VXI
memory in the A16, A24, and A32 address spaces. The best
method to use depends on the VISA program characteristics.

• Low- level viPeek/viPoke

• viMapAddress

• viUnmapAddress

• viPeek8, viPeek16, viPeek32

• viPoke8, viPoke16, viPoke32

• High- level viIn/viOut

• viIn8, viIn16, viIn32

• viOut8, viOut16, viOut32

• High- level viMoveIn/viMoveOut

• viMoveIn8, viMoveIn16, viMoveIn32

• viMoveOut8, viMoveOut16, viMoveOut32
Using Low-Level viPeek/viPoke
Low- level viPeek/viPoke is the most efficient in programs
that require repeated access to different addresses in the
same memory space.

The advantages of low- level viPeek/viPoke are:

• Individual viPeek/viPoke calls are faster than viIn/viOut
or viMoveIn/viMoveOut calls.

• Memory pointers may be directly de- referenced in some
cases for the lowest possible overhead.

The disadvantages of low- level viPeek/viPoke are:

• A viMapAddress call is required to set up mapping before
viPeek/viPoke can be used.
113

114

4 Programming via GPIB and VXI
• viPeek/viPoke calls do not return status codes.

• Only one active viMapAddress is allowed per vi session.

• There may be a limit to the number of simultaneous
active viMapAddress calls per process or system.
Using High-Level viIn/viOut
High- level viIn/viOut calls are best in situations where a
few widely scattered memory accesses are required and
speed is not a major consideration.

The advantages of high- level viIn/viOut are:

• It is the simplest method to implement.

• There is no limit on the number of active maps.

• A16, A24, and A32 memory access can be mixed in a
single vi session.

The disadvantage of high- level viIn/viOut calls is that they
are slower than viPeek/viPoke.
Using High-Level viMoveIn/viMoveOut
High- level viMoveIn/viMoveOut calls provide the highest
possible performance for transferring blocks of data to or
from the VXI backplane. Although these calls have higher
initial overhead than the viPeek/viPoke calls, they are
optimized on each platform to provide the fastest possible
transfer rate for large blocks of data.

For small blocks, the overhead associated with
viMoveIn/viMoveOut may actually make these calls longer
than an equivalent loop of viIn/viOut calls. The block size at
which viMoveIn/viMoveOut becomes faster depends on the
particular platform and processor speed.

The advantages of high- level viMoveIn/viMoveOut are:

• They are simple to use.

• There is no limit on number of active maps.

• A16, A24, and A32 memory access can be mixed in a
single vi session.
Agilent VISA User’s Guide

Programming via GPIB and VXI 4

Agilent VISA User’s Guide
• They provide the best performance when transferring
large blocks of data.

• They support both block and FIFO mode.

The disadvantage of viMoveIn/viMoveOut calls is that they
have higher initial overhead than viPeek/viPoke.

Sample: Using VXI Memory I/O

This program demonstrates using various types of VXI
memory I/O.

/* memio.c
This example program demonstrates the use of
various memory I/O methods in VISA. */

#include <visa.h>
#include <stdlib.h>
#include <stdio.h>

#define VXI_INST "VXI0::24::INSTR"

void main () {
 ViSession defaultRM, vi;
 ViAddr address;
 ViUInt16 accessMode;
 unsigned short *memPtr16;
 unsigned short id_reg;
 unsigned short devtype_reg;
 unsigned short memArray[2];

 /*Open default resource manager and session
 to instr*/
 viOpenDefaultRM (&defaultRM);
 viOpen defaultRM, VXI_INST, VI_NULL,VI_NULL,
 &vi);

/*
==
==
 Low level memory I/O = viPeek16 = direct
 memory dereference (when allowed)

==
115

116

4 Programming via GPIB and VXI
*/
 /* Map into memory space */
 viMapAddress (vi, VI_A16_SPACE, 0x00, 0x10,
VI_FALSE,VI_NULL, &address);

/*
==
=
 Using viPeek

==
*/
 Read instrument id register contents */
 viPeek16 (vi, address, &id_reg);

 /* Read device type register contents
 ViAddr is defined as a (void *) so we must
 cast it to something else in order to do
 pointer arithmetic. */

 viPeek16 (vi, (ViAddr)((ViUInt16 *)address +
 0x01),&devtype_reg);

 /* Print results */
 printf (" viPeek16: ID Register = 0x%4X\n",
 id_reg);
 printf (" viPeek16: Device Type Register =
 0x%4X\n",devtype_reg);

 /* Use direct memory dereferencing if
 supported */
 viGetAttribute(vi, VI_ATTR_WIN_ACCESS,
 &accessMode);
 if (accessMode == VI_DEREF_ADDR) {

 /* assign pointer to variable of correct
 type */
 memPtr16 = (unsigned short *)address;

 /* do the actual memory reads */
 id_reg = *memPtr16;
 devtype_reg = *(memPtr16+1);
Agilent VISA User’s Guide

Programming via GPIB and VXI 4

Agilent VISA User’s Guide
 /* Print results */
 printf ("dereference: ID Register =
 0x%4X\n",id_reg);
 printf ("dereference: Device Type Register
 =0x%4X\n", devtype_reg);
 }

 /* Unmap memory space */
 viUnmapAddress (vi);

/*==
 High Level memory I/O = viIn16

==*/
 /* Read instrument id register contents */
 viIn16 (vi, VI_A16_SPACE, 0x00, &&id_reg);

 /* Read device type register contents */
 viIn16 (vi, VI_A16_SPACE, 0x02,&devtype_reg);

 /* Print results */
 printf (" viIn16: ID Register = 0x%4X\n",
 id_reg);
 printf (" viIn16: Device Type Register =
 0x%4X\n", devtype_reg);

/*==
======
High Level block memory I/O = viMoveIn16

The viMoveIn/viMoveOut commands do both block
read/write and FIFO read write. These commands
offer the best performance for reading and
writing large data blocks on the VXI backplane.
For this example we are only moving 2 words at a
time. Normally, these functions would be used to
move much larger blocks of data.

If the value of VI_ATTR_SRC_INCREMENT is 1 (the
default),viMoveIn does a block read. If the
value of VI_ATTR_SRC_INCREMENT is 0, viMoveIn
does a FIFO read.
117

118

4 Programming via GPIB and VXI
If the value of VI_ATTR_DEST_INCREMENT is 1 (the
default),viMoveOut does a block write. If the
value of VI_ATTR_DEST_INCREMENT is 0, viMoveOut
does a FIFO write.
=== */

/* Demonstrate block read.
 Read instrument id register and device type
 register into an array.*/

 viMoveIn16 (vi, VI_A16_SPACE, 0x00, 2,
 memArray);

 /* Print results */
 printf (" viMoveIn16: ID Register = 0x%4X\n",
 memArray[0]);
 printf (" viMoveIn16: Device Type Register =
 0x%4X\n", memArray[1]);

/* Demonstrate FIFO read.

 First set the source increment to 0 so we will
 repetitively read from the same memory
 location.*/
 viSetAttribute(vi, VI_ATTR_SRC_INCREMENT, 0
);

 /* Do a FIFO read of the Id Register */
 viMoveIn16 (vi, VI_A16_SPACE, 0x00, 2,
 memArray);

 /* Print results */
 printf (" viMoveIn16: 1 ID Register =
 0x%4X\n",
 memArray[0]);
 printf (" viMoveIn16: 2 ID Register =
 0x%4X\n",
 memArray[1]);

 /* Close sessions */
 viClose (vi);
 viClose (defaultRM); }
Agilent VISA User’s Guide

Programming via GPIB and VXI 4
Using the Memory Access Resource
Agilent VISA User’s Guide
For VISA 1.1 and later, the Memory Access (MEMACC)
resource type has been added to VXI and GPIB-VXI.
VXI::MEMACC and GPIB- VXI::MEMACC allow access to all of
the A16, A24, and A32 memory by providing the controller
with access to arbitrary registers or memory addresses on
memory- mapped buses.

The MEMACC resource, like any other resource, starts with
the basic operations and attributes of other VISA resources.
For example, modifying the state of an attribute is done via
the operation viSetAttribute (see VISA Resource Classes in
the VISA Online Help for details).
Memory I/O Services
Memory I/O services include high- level memory I/O services
and low- level memory I/O services.

High-Level Memory I/O Services

High- level memory I/O services allow register- level access to
the interfaces that support direct memory access, such as
the VXIbus, VMEbus, MXIbus, or even VME or VXI memory
through a system controlled by a GPIB-VXI controller. A
resource exists for each interface to which the controller has
access.

You can access memory on the interface bus through
operations such as viIn16 and viOut16. These operations
encapsulate the map/unmap and peek/poke operations found
in the low- level service. There is no need to explicitly map
the memory to a window.

Low-Level Memory I/O Services

Low- level memory I/O services also allow register- level
access to the interfaces that support direct memory access.
Before an application can use the low- level service on the
interface bus, it must map a range of addresses using the
operation viMapAddress.
119

120

4 Programming via GPIB and VXI
Although the resource handles the allocation and operation
of the window, the programmer must free the window via
viUnMapAddress when finished. This makes the window
available for the system to reallocate.

Sample: MEMACC Resource Program

This program demonstrates one way to use the MEMACC
resource to open the entire VXI A16 memory and then
calculate an offset to address a specific device.

/* peek16.c */
#include <stdio.h>
#include <stdlib.h>
#include <visa.h>

#define EXIT1
#define NO_EXIT 0

/* This function simplifies checking for VISA
errors. */
void checkError(ViSession vi, ViStatus status,
char
 *errStr,int doexit){
 char buf[256];
 if (status >= VI_SUCCESS)
 return;
 buf[0] = 0;
 viStatusDesc(vi, status, buf);
 printf("ERROR 0x%lx (%s)\n ’%s’\n", status,
errStr,
 buf);
 if (doexit == EXIT)
 exit (1);
 }

void main() {
 ViSession drm;
 ViSession vi;
 ViUInt16inData16 = 0;
 ViUInt16peekData16 = 0;
 ViUInt8*addr;
Agilent VISA User’s Guide

Programming via GPIB and VXI 4

Agilent VISA User’s Guide
 ViUInt16*addr16;
 ViStatusstatus;
 ViUInt16offset;

 status = viOpenDefaultRM (&drm);
 checkError(0, status, "viOpenDefaultRM",
EXIT);

 /* Open a session to the VXI MEMACC Resource*/
 status = viOpen(drm, "vxi0::memacc",
VI_NULL, VI_NULL,
 &vi);
 checkError (0, status, "viOpen", EXIT);

 /* Calculate the A16 offset of the VXI
REgisters for
 the device at VXI logical address 8. */
 offset = 0xc000 + 64 * 8;

 /* Open a map to all of A16 memory space. */
 status =
viMapAddress(vi,VI_A16_SPACE,0,0x10000,
 VI_FALSE,0,(ViPAddr)(&addr));
 checkError(vi, status, "viMapAddress", EXIT
);

 /* Offset the address pointer returned from
 viMapAddress for use with viPeek16. */
 addr16 = (ViUInt16 *) (addr + offset);

 /* Peek the contents of the card’s ID register
(offset
 0 from card’s base address. Note that
viPeek does
 not return a status code. */
 viPeek16(vi, addr16, &peekData16);

 /* Now use viIn16 and read the contents of the
same
 register */
 status = viIn16(vi, VI_A16_SPACE,
 ViBusAddress)offset, &inData16);
 checkError(vi, status, "viIn16", NO_EXIT);
121

122

4 Programming via GPIB and VXI
 /* Print the results. */
 printf("inData16 : 0x%04hx\n", inData16);
 printf("peekData16: ox%04hx\n", peekData16
);

 viClose(vi);
 viClose (drm);
 }
MEMACC Attribute Descriptions
Generic MEMACC Attributes

The following read- only attributes (VI_ATTR_TMO_VALUE is
read/write) provide general interface information.

Table 27 Attributes That Provide General Interface Information

Attribute Description

VI_ATTR_INTF_TYPE Interface type of the given session.

VI_ATTR_INTF_NUM Board number for the given interface.

VI_ATTR_TMO_VALUE Minimum timeout value to use, in milliseconds.
A timeout value of VI_TMO_IMMEDIATE
means operation should never wait for the
device to respond. A timeout value of
VI_TMO_INFINITE disables the timeout
mechanism.

VI_ATTR_INTF_INST_NAME Human-readable text describing the given
interface.

VI_ATTR_DMA_ALLOW_EN Specifies whether I/O accesses should use
DMA (VI_TRUE) or Programmed I/O
(VI_FALSE).
Agilent VISA User’s Guide

Programming via GPIB and VXI 4

Agilent VISA User’s Guide
VXI and GPIB-VXI Specific MEMACC Attributes

The following attributes, most of which are read/write,
provide memory window control information.

Table 28 Attributes That Provide Memory Window Control Information

Attribute Description

VI_ATTR_VXI_LA Logical address of the local controller.

VI_ATTR_SRC_INCREMENT Used in viMoveInxx operation to specify
how much the source offset is to be
incremented after every transfer. The default
value is 1 and the viMoveInxx operation
moves from consecutive elements.

If this attribute is set to 0, the viMoveInxx
operation will always read from the same
element, essentially treating the source as a
FIFO register.

VI_ATTR_DEST_INCREMENT Used in viMoveOutxx operation to specify
how much the destination offset is to be
incremented after every transfer. The default
value is 1 and the viMoveOutxx operation
moves into consecutive elements.

If this attribute is set to 0, the viMoveOutxx
operation will always write to the same
element, essentially treating the destination
as a FIFO register.

VI_ATTR_WIN_ACCESS Specifies modes in which the current
window may be addressed: not currently
mapped, through the viPeekxx or viPokexx
operations only, or through operations
and/or by directly de-referencing the address
parameter as a pointer.

VI_ATTR_WIN_BASE_ADDR Base address of the interface bus to which
this window is mapped.

VI_ATTR_WIN_SIZE Size of the region mapped to this window.
123

124

4 Programming via GPIB and VXI
GPIB-VXI Specific MEMACC Attributes

The following read- only attributes provide specific address
information about GPIB hardware.

VI_ATTR_SRC_BYTE_ORDER Specifies the byte order used in high-level
access operations, such as viInxx and
viMoveInxx, when reading from the source.

VI_ATTR_DEST_BYTE_ORDER Specifies the byte order used in high level
access operations, such as viOutxx and
viMoveOutxx, when writing to the
destination.

VI_ATTR_WIN_BYTE_ORDER Specifies the byte order used in low-level
access operations, such as viMapAddress,
viPeekxx, and viPokexx, when accessing the
mapped window.

VI_ATTR_SRC_ACCESS_PRIV Specifies the address modifier used in
high-level access operations, such as viInxx
and viMoveInxx, when reading from the
source.

VI_ATTR_DEST_ACCESS_PRIV Specifies the address modifier used in
high-level access operations such as viOutxx
and viMoveOutxx, when writing to
destination.

VI_ATTR_WIN_ACCESS_PRIV Specifies the address modifier used in
low-level access operations, such as
viMapAddress, viPeekxx, and viPokexx,
when accessing the mapped window.

Table 29 Attributes that Provide Specific Address Information

Attribute Description

VI_ATTR_INTF_PARENT_NUM Board number of the GPIB board to
which the GPIB-VXI is attached.

VI_ATTR_GPIB_PRIMARY_ADDR Primary address of the GPIB-VXI
controller used by the session.

Table 28 Attributes That Provide Memory Window Control Information
Agilent VISA User’s Guide

Programming via GPIB and VXI 4

Agilent VISA User’s Guide
MEMACC Resource Event Attribute

The following read- only events provide notification that an
asynchronous operation has completed.

VI_ATTR_GPIB_SECONDARY_ADDR Secondary address of the GPIB-VXI
controller used by the session.

Table 30 Events Providing Notification About Asynchronous Operations

Attribute Description

VI_ATTR_EVENT_TYPE Unique logical identifier of the event.

VI_ATTR_STATUS Return code of the asynchronous I/O operation that
has completed.

VI_ATTR_JOB_ID Job ID of the asynchronous I/O operation that has
completed.

VI_ATTR_BUFFER Address of a buffer used in an asynchronous
operation.

VI_ATTR_RET_COUNT Actual number of elements that were asynchronously
transferred.

Table 29 Attributes that Provide Specific Address Information
125

4 Programming via GPIB and VXI
Using VXI-Specific Attributes
126
VXI- specific attributes can be useful to determine the state
of your VXI system. Attributes are read- only and read/write.
Read- only attributes specify things such as the logical
address of the VXI device and information about where your
VXI device is mapped. This section shows how you might
use some of the VXI- specific attributes. See VISA Resource
Classes in the VISA Online Help for information on VISA
attributes.
Using the Map Address as a Pointer
The VI_ATTR_WIN_ACCESS read- only attribute specifies how
a window can be accessed. You can access a mapped
window with the VISA low- level memory functions or with a
C pointer if the address is de- referenced. To determine how
to access the window, read the VI_ATTR_WIN_ACCESS
attribute.

VI_ATTR_WIN_ACCESS Settings

The VI_ATTR_WIN_ACCESS read- only attribute can be set to
one of the following:

Table 31 Settings for the VI_ATTR_WIN_ACCESS Attribute

Setting Description

VI_NMAPPED Specifies that the window is not mapped.

VI_USE_OPERS Specifies that the window is mapped and you can only use
the low-level memory functions to access the data.

VI_DEREF_ADDR Specifies that the window is mapped and has a
de-referenced address. In this case you can use the
low-level memory functions to access the data, or you can
use a C pointer. Using a de-referenced C pointer will allow
faster access to data.
Agilent VISA User’s Guide

Programming via GPIB and VXI 4

Agilent VISA User’s Guide
Sample: Determining Window Mapping

ViAddr address;
Vi UInt16 access;
ViUInt16 value;
.
.
.

viMapAddress(vi, VI_A16_SPACE, 0x00, 0x04,
VI_FALSE,
 VI_NULL, &address);
viGetAttribute(vi, VI_ATTR_WIN_ACCESS, &access);
.
.
If(access==VI_USE_OPERS) {
 viPeek16(vi, (ViAddr)(((ViUInt16 *)address) +
 4/sizeof(ViUInt16)), &value)
}else if (access==VI_DEREF_ADDR){
 value=*((ViUInt16
*)address+4/sizeof(ViUInt16));
}else if (access==VI_NMAPPED){
 return error;
}
.
.

Setting the VXI Trigger Line
The VI_ATTR_TRIG_ID attribute is used to set the VXI
trigger line. This attribute is listed under generic attributes
and defaults to VI_TRIG_SW (software trigger). To set one of
the VXI trigger lines, set the VI_ATTR_TRIG_ID attribute as
follows:

viSetAttribute(vi, VI_ATTR_TRIG_ID,
VI_TRIG_TTL0);
127

128

4 Programming via GPIB and VXI
The above function sets the VXI trigger line to TTL trigger
line 0 (VI_TRIG_TTL0). The following are valid VXI trigger
lines. (Panel In is an Agilent extension of the VISA
specification.)

Once you set a VXI trigger line, you can set up an event
handler to be called when the trigger line fires. See “Using
Events and Handlers” on page 55 for more information on
setting up an event handler. Once the VI_EVENT_TRIG event
is enabled, the VI_ATTR_TRIG_ID becomes a read only
attribute and cannot be changed. You must set this attribute
prior to enabling event triggers.

The VI_ATTR_TRIG_ID attribute can also be used by
viAssertTrigger function to assert software or hardware
triggers. If VI_ATTR_TRIG_ID is VI_TRIG_SW, the device is
sent a Word Serial Trigger command. If the attribute is any
other value, a hardware trigger is sent on the line
corresponding to the value of that attribute.

Table 32 VXI Trigger Lines and Values

VXI Trigger
Line

VI_ATTR_TRIG_ID Value

TTL 0 VI_TRIG_TTL0

TTL 1 VI_TRIG_TTL1

TTL 2 VI_TRIG_TTL2

TTL 3 VI_TRIG_TTL3

TTL 4 VI_TRIG_TTL4

TTL 5 VI_TRIG_TTL5

TTL 6 VI_TRIG_TTL6

TTL 7 VI_TRIG_TTL7

ECL 0 VI_TRIG_ECL0

ECL 1 VI_TRIG_ECL1

Panel In VI_TRIG_PANEL_IN
Agilent VISA User’s Guide

Agilent IO Libraries Suite
Agilent VISA User’s Guide
5
Programming via LAN

This chapter provides guidelines for programming via a LAN
(Local Area Network). A LAN allows you to extend the
control of instrumentation beyond the limits of typical
instrument interfaces.

The chapter contents are:

• LAN Interfaces Overview

• Communicating with LAN- Connected Devices
NOTE This chapter describes programming using the VISA TCPIP interface type
to communicate directly with a LAN-connected device, as well as using a
remote interface (also known as a LAN client) to emulate a GPIB, serial
(ASRL), or USB interface on the local machine to communicate with a
LAN-connected device.

See the Agilent IO Libraries Suite Online Help for information on how to
start and stop the Remote IO Server software, and on how to create and
configure LAN interfaces and remote GPIB/USB/serial interfaces.

See the Connectivity Guide for detailed information on connecting
instruments to a LAN, and for a discussion of network protocols.
129Agilent Technologies

5 Programming via LAN
LAN and Remote Interfaces Overview
130
This section provides an overview of LAN (Local Area
Network) interfaces. A LAN is a way to extend the control
of instrumentation beyond the limits of typical instrument
interfaces. To communicate with instruments over the LAN,
you must first configure a LAN interface or a remote GPIB,
USB, or serial interface, using the Agilent Connection
Expert.
Direct LAN Connection versus Remote IO Server/Client Connection
Some instruments support direct connection to the LAN.
These instruments include an RJ- 45 or other standard LAN
connector and software support for operating as an
independent device on the network. Some of these
instruments are Web- enabled, meaning that they host a Web
page which you can access over the LAN.

With the Agilent IO Libraries Suite, you can connect to
instruments across the LAN even if they do not have direct
LAN capability, if they are connected to gateways (such as
the Agilent E5810A) or to another PC running the Remote
IO Server software.

Refer to the IO Libraries Suite and the Connectivity Guide
for information on connecting and configuring different types
of LAN instrument connections.
Remote IO Server/Client Architecture
The Remote IO Server and Client software provided with
Agilent IO Libraries Suite allows instrumentation to be
controlled over a LAN. Using standard LAN connections,
instruments can be controlled from computers that do not
have special interfaces for instrument control.
Agilent VISA User’s Guide

Programming via LAN 5

Agilent VISA User’s Guide
Client/Server Model

The IO Libraries Suite software uses the client/server model
of computing. Client/server computing refers to a model in
which an application (the client) does not perform all
necessary tasks of the application itself. Instead, the client
makes requests of another computing device (the remote
I/O server) for certain services.

As shown in the following figure, a remote I/O client (a
Windows PC) makes VISA requests over the network to a
remote I/O server (such as a Windows PC, an E5810
LAN/GPIB Gateway, or a Series 700 HP- UX workstation).

Gateway Operation

The remote I/O server is connected to the instrumentation
or devices to be controlled. Once the remote I/O server has
completed the requested operation on the instrument or
device, the remote I/O server sends a reply to the client.
This reply contains the requested data and status
information that indicates whether or not the operation was
successful. The remote I/O server acts as a gateway between
the LAN software that the client system supports and the
instrument- specific interface that the device supports.
131

132

5 Programming via LAN

Windows PCs

Client

LAN

Remote
I/O
Server

Series 700
workstation or
Windows PC

GPIB
bus

GPIB
Instrument

GPIB
Instruments

E5810
LAN/GPIB
Gateway

GPIB bus
(or other)

LAN Instruments
(VXI-11.2 GPIB Emulation
 or
VXI-11.3 LAN Instruments)

Agilent VISA User’s Guide

Programming via LAN 5
Addressing LAN-Connected Devices
Agilent VISA User’s Guide
VISA can communicate with LAN- connected devices in one
of two ways:

• TCPIP interface type

• Remote interface type (available only with Agilent IO
Libraries Suite)
Using the TCPIP Interface Type for LAN Access
VISA provides the TCPIP interface type to communicate with
LAN- connected devices. These can be devices connected
directly to the LAN, or they can be connected to the LAN
through a LAN gateway such as the Agilent E5810
LAN/GPIB gateway or through Remote IO Server software
running on a remote computer with instruments connected
to it.

The format of a TCPIP VISA resource string is:

TCPIP[<board>]::<hostname>[::<LAN device
name>][::INSTR]

where:

• <board> = board number (default is 0)

• <hostname> = the hostname or IP address of the LAN
device or server

• <LAN device name> = the remote device name (case
sensitive with default name of inst0)

Using Connection Expert, you can configure a LAN interface
to use either the VXI- 11 protocol or the SICL- LAN
protocol. The protocol(s) you will use depends upon the
devices you are using and the protocol(s) that they support.

The VXI- 11 protocol constrains the LAN device name to be
of the form inst0, inst1, … for VXI- 11.3 devices and gpib0,n,
gpib1,n, … for VXI- 11.2 (GPIB Emulation) devices.

The SICL- LAN protocol allows any valid SICL name for the
LAN device name. A valid SICL name must be a unique
133

134

5 Programming via LAN
string of alphanumeric characters, starting with a letter.

Some examples of TCPIP resource strings follow.

Table 33 Example TCPIP Resource Strings

String Description

TCPIP0::testMachine@agilent.com::gpib0,2::INSTR A VXI-11.2 GPIB device at hostname testMachine@agilent.com.

TCPIP0::123.456.0.21::gpib0,2::INSTR A VXI-11.2 GPIB device at a machine whose IP address is
123.456.0.21.

TCPIP0::myMachine::inst0::INSTR A VXI-11.3 LAN instrument at hostname myMachine.

TCPIP::myMachine A VXI-11.3 LAN instrument at hostname myMachine. Note that
default values for board = 0, LAN device name = inst0, and the
::INSTR resource class are used.

TCPIP0::testMachine1::COM1,488::INSTR An RS-232 device connected to a LAN server or gateway at
hostname testMachine1. This device must use SICL-LAN protocol
since RS-232 devices are not supported by the VXI-11 protocol.

TCPIP0::myMachine::gpib0,2::INSTR A GPIB device at hostname myMachine. This device must use
SICL-LAN protocol since gpib0,2 is not a valid remote name with
the VXI-11 protocol.

TCPIP0::myMachine::UsbDevice1::INSTR A USB device with a SICL alias of UsbDevice1 connected to a LAN
server at hostname myMachine. Note that the SICL alias is defined
on the remote machine, not on the local machine.

 Although the SICL and VISA alias names are normally the same, if
they are not, you must be sure to use the SICL alias and not the
VISA alias.

This device must use the SICL-LAN protocol since USB devices are
not supported by the VXI-11 protocol.

TCPIP0::myMachine::usb0[2391::1031::SN_00123::0]::I
NSTR

A USB device with:

 Manufacture ID = 2391
 Model Code = 1031
 Serial Number = 'SN_00123'
 USBTMC Intfc # = 0

connected to a LAN server at hostname myMachine.

This device must use SICL-LAN protocol since USB devices are not
supported by the VXI-11 protocol.
Agilent VISA User’s Guide

Programming via LAN 5

Agilent VISA User’s Guide
NOTE A LAN session to a remote interface provides the same VISA function
support as if the interface were local, except that VXI-specific functions
are not supported over LAN.
Addressing a Session Using the TCPIP Interface Type

This sample shows one way to open a device session with a
GPIB device at primary address 23 on a remote PC that is
running a LAN server. The hostname of the remote PC is
myMachine. See Chapter 3, “Programming with VISA”, for
more information on addressing device sessions.

ViSession defaultRM, vi;.

.

viOpenDefaultRM(&defaultRM);

viOpen(defaultRM,
"TCPIP0::myMachine::gpib0,23::INSTR", VI_NULL,
VI_NULL, &vi);

.

.

viClose(vi);

viClose(defaultRM);
Using a Remote Interface for LAN Access
Agilent VISA provides three types of VISA LAN Client
interfaces, implemented in Agilent IO Libraries Suite as
remote interfaces:

• Remote serial interface (ASRL VISA LAN Client)

• Remote GPIB interface (GPIB VISA LAN Client)

• Remote USB interface (USB VISA LAN Client)

Remote interfaces are configured using Connection Expert;
they provide virtual GPIB, serial, or USB interfaces. They
make it possible to remotely access a LAN- connected device
135

136

5 Programming via LAN
as if it were connected to a local interface. If, for example,
the GPIB2 interface is configured as a remote GPIB interface,
a program controlling the devices GPIB2::5::INSTR and
GPIB2::7::INSTR would not be aware of the fact that these
devices are actually connected via LAN and not to a GPIB
interface connected to the local machine.

See the Agilent IO Libraries Suite Online Help for specific
information on configuring remote interfaces.

Remote Serial Interface (ASRL VISA LAN Client)

A remote serial interface can use only the SICL- LAN
protocol. A remote serial interface can be configured to use
the serial port on the Agilent E5810 LAN/GPIB gateway or
the serial ports on a PC running the Remote IO Server
software.

Remote GPIB Interface (GPIB VISA LAN Client)

A remote GPIB interface can use both the VXI- 11 and
SICL- LAN protocols. Typical uses for remote GPIB interfaces
are with LAN/GPIB gateways (e.g. Agilent E5810), PCs with
GPIB interfaces that are running a LAN server, and VXI- 11.2
LAN- based instruments.

A remote GPIB interface can only be used to communicate
with VXI- 11.2 (GPIB Emulation) devices. This is because the
VISA GPIB interface type requires a primary and (optionally)
a secondary address when communicating with a device.
VXI- 11.3 devices do not support the concept of a primary
address, so they cannot be accessed with a remote GPIB
interface.

Remote USB Interface (USB VISA LAN Client)

A remote USB interface can use only the SICL- LAN protocol.
It can communicate with USB devices attached to a remote
PC running the Remote IO Server software.
Agilent VISA User’s Guide

Programming via LAN 5

Agilent VISA User’s Guide
Note that if you have defined a VISA alias for a USB device
on the remote I/O server, you must either define the same
(or another) alias for the remote USB device on the client
PC, or use the full USB resource string. Alias definitions are
not shared between the remote I/O server and the client.

Addressing a Session Using a Remote Interface

In general, the rules to address a remote session are the
same as to address a local session. The only difference for a
remote session is that you use the VISA interface ID
(provided during I/O configuration via Connection Expert)
that relates to the remote interface.

The following sample shows one way to open a device
session with a GPIB device at primary address 23 on a
remote PC that is running Remote IO Server software. A
remote GPIB interface has been configured at GPIB2 to
communicate with that machine. See Chapter 3,
“Programming with VISA”, for more information on
addressing device sessions.

ViSession defaultRM, vi;.

.

viOpenDefaultRM(&defaultRM);

viOpen(defaultRM, "GPIB2::23::INSTR", VI_NULL,
VI_NULL, &vi);

.

.

viClose(vi);

viClose(defaultRM);
137

138

5 Programming via LAN
Agilent VISA User’s Guide

Agilent IO Libraries Suite
Agilent VISA User’s Guide
6
Programming via USB

This chapter provides guidelines for VISA programming of
USB instruments that conform to USBTMC (Universal Serial
Bus Test and Measurement Class) and/or USBTMC- USB488
(Universal Serial Bus Test and Measurement Class, Subclass
USB488 Specification).

The chapter contents are:

• USB Interfaces Overview

• Communicating with a USB Instrument Using VISA
139Agilent Technologies

6 Programming via USB
USB Interfaces Overview
140
USBTMC/USBTMC- USB488 instruments are detected and
automatically configured by Agilent VISA when they are
plugged into the computer. The Agilent IO Libraries Suite
Online Help describes the USB instrument configuration
process in more detail.
NOTE Do not confuse the Agilent 82357 USB/GPIB Interface with a USBTMC
device. The 82357 is automatically configured as a GPIB interface, not as a
USBTMC device, when it is plugged into the computer. Only
USBTMC/USBTMC-USB488 devices are configured as USB devices by
Agilent VISA.
Due to the complexity of the VISA USB resource string, a
VISA alias (simple name) is assigned to each USB
instrument when it is plugged into the computer. You can
use either the alias or the full VISA resource string when
opening a VISA resource, but using the alias is
recommended because it is simpler and because it allows
substitution of USB instruments without the need to change
the VISA program.

You can also create VISA aliases for other (non- USB)
instruments, using the Agilent Connection Expert.
Agilent VISA User’s Guide

Programming via USB 6
Communicating with a USB Instrument Using VISA
Agilent VISA User’s Guide
To establish communications with a USB device using VISA,
you can either use the full VISA resource string for the
device or use the alias provided by VISA. Using the alias is
recommended, for reasons described below.

Using the full VISA resource string, a viOpen call would look
something like this:

viOpen(. . .,
"USB0::2391::1031::0000000123::0::INSTR", . . .
);

Following is a summary of the components of this call.

This string uniquely identifies the USB device. The values
needed for the resource string are displayed in a dialog box
when the device is plugged into the computer.

To simplify the way a USB device is identified, Agilent VISA
also provides an alias which can be used in place of this
resource string. The first USB device that is plugged in is
assigned a default alias of UsbDevice1. Additional devices are
assigned aliases of UsbDevice2, UsbDevice3, etc. You can
modify the default alias name at the time a device is plugged
in, or by running Agilent Connection Expert and changing
the properties of the VISA alias.

Table 34 Summary of Full-String viOpen Call

Value Description Data Type

2391 Manufacturer ID 16-bit unsigned integer

1031 Model Code 16-bit unsigned integer

0000000123 Serial Number string value

0 USBTMC Interface Number 8-bit unsigned integer
141

142

6 Programming via USB
Although the case of a VISA alias is preserved, case is
ignored when the alias is used in place of the full resource
string in a viOpen call. For example, UsbDevice1,
usbdevice1 and USBDEVICE1 all refer to the same device.

Using the alias, a viOpen call would look something like
this:

viOpen(. . ., "UsbDevice1", . . .);

As you can see, this is much simpler than having to use the
full resource string for a USB device.

Using the alias in a program also makes it more portable.
For example, two identical USB function generators have
different resource strings because they have different serial
numbers. If these function generators are used in two
different test systems and you use the full resource string to
access the function generator in the test program, you
cannot use that same program for both test systems, since
the function generators’ full resource strings are different.
By using the alias in the program, however, you can use the
same program in both test systems. All you need to do is
make sure the same alias is used for the function generator
in both systems.
Agilent VISA User’s Guide

Agilent IO Libraries Suite
Agilent VISA User’s Guide
Glossary

address

A string (or other language construct) that uniquely
locates and identifies a resource. VISA defines an
ASCII- based grammar that associates address strings with
particular physical devices or interfaces and VISA
resources.

alias

See VISA alias.

API

Application Programming Interface. The interface that a
programmer sees when creating an application. For
example, the VISA API consists of the sum of all of the
operations, attributes, and events of each of the VISA
ResourceClasses.

attribute

In VISA and SICL, a value that indicates the operational
state of a resource. Some attributes can be changed;
others are read- only.

bus error

An error that signals failure to access an address. Bus
errors occur in conjunction with low- level accesses to
memory, and usually involve hardware with bus mapping
capabilities. Bus errors may be caused by non- existent
memory, a non- existent register, an incorrect device
access, etc.
143Agilent Technologies

144

Glossary
bus error handler

Software that runs when a bus error occurs.

commander

In test- system architectures, a device that has the ability
to control another device. In a specialized case, a
commander may also be the device that has sole control
over another device (as with the VXI Commander/Servant
hierarchy).

commander session

A session that communicates to the system controller.

communication channel

A communication path between a software element and a
resource. In VISA, “communication channel” is
synonymous with “session.” Every communication channel
in VISA is unique.

Connection Expert

An Agilent software utility that helps you quickly
establish connections between your instruments and your
PC. It also helps you troubleshoot connectivity problems.
Connection Expert is part of the Agilent IO Libraries
Suite product.

controller

A computer used to communicate with a device such as
an instrument. The controller is in charge of
communications and device operation; it controls the flow
of communication and performs addressing and other bus
management functions.
Agilent VISA User’s Guide

Glossary

Agilent VISA User’s Guide
device

A unit that receives commands from a controller. A device
is typically an instrument, but can also be a computer
acting in a non- controller role or another peripheral such
as a printer or plotter. In VISA, a device is logically
represented by the association of several VISA resources.

device driver

Software code that communicates with a device: for
example, a printer driver that communicates with a
printer from a PC. A device driver may either
communicate directly with a device by reading to and
writing from registers, or it may communicate through an
interface driver.

device session

A session that communicates as a controller with a single,
specific device such as an instrument.

direct I/O

Programmatic communication with instruments not
involving an instrument driver. Direct I/O may be
accomplished by using an IO Library (VISA, VISA COM, or
SICL) or by using direct I/O tools such as those provided
by Agilent VEE and Agilent T&M Toolkit.

driver

See instrument driver and device driver.

explorer view

The tree view within the Connection Expert window that
shows all devices connected to a test system.

handler

A software routine that responds to an asynchronous
event such as an SRQ or an interrupt.
145

146

Glossary
instrument

A device that accepts commands and performs a test and
measurement function.

instrument driver

Software that runs on a computer to allow an application
to control a particular instrument.

Interactive IO

An Agilent application that allows you to interactively
send commands to instruments and read the results.
Interactive IO is part of the Agilent IO Libraries Suite
product.

interface

A connection and medium of communication between
devices and controllers. Interfaces include mechanical,
electrical, and protocol connections.

interface driver

Software that communicates with an interface. The
interface driver also handles commands used to perform
communications on an interface.

interface session

A session that communicates and controls parameters affecting an
entire interface.

interrupt

An asynchronous event that requires attention and actions that are
out of the normal flow of control of a program.

IO Control
Agilent VISA User’s Guide

Glossary

Agilent VISA User’s Guide
The icon in the Windows notification area (usually the
lower right corner of your screen). The IO Control gives
you access to Agilent I/O utilities such as Connection
Expert, Agilent I/O documentation, and VISA options.

IO Libraries

Application programming interfaces (APIs) for direct I/O
communication between applications and devices. There
are three Agilent IO Libraries in the Agilent IO Libraries
Suite: VISA, VISA COM, and SICL.

lock

A state that prohibits other users from accessing a
resource such as a device or interface.

logical unit

A number associated with an interface. A logical unit, in
SICL and Agilent VEE, uniquely identifies an interface.
Each interface on the controller must have a unique
logical unit.

mapping

An operation that returns a reference to a specified
section of an address space and makes the specified range
of addresses accessible to the requester. This function is
independent of memory allocation.

non-controller role

A computer is in a non-controller role when it acts as a device
communicating with a computer that is in a controller role.

notification area

The area on the Windows taskbar where notifications are posted,
typically in the lower right corner of the screen. Also called “taskbar
notification area” or “Windows notification area”.
147

148

Glossary
operation

A defined action that can be performed on a resource.

primary VISA

The VISA installation that controls the visa32.dll file. The
primary VISA will be used by default in VISA
applications. See also “secondary VISA”.

process

An operating system component that shares a system's
resources. A single- process computer system allows only a
single program to execute at any given time. A
multi- process computer system allows multiple programs
to execute simultaneously, each in a separate process
environment.

refresh

In Connection Expert, the action that invokes the
discovery mechanism for detecting interfaces and
instruments connected to your computer. The explorer
view is then refreshed to show the current, discovered
state of your test system.

register

An address location that contains a value that represents
the state of hardware, or that can be written into to cause
hardware to perform a specified action or to enter a
specified state.

resource (or resource instance)

In VISA, an implementation of a resource class (in object-oriented
terms, an instance of a resource class). For example, an instrument is
represented by a resource instance.
Agilent VISA User’s Guide

Glossary

Agilent VISA User’s Guide
resource class

The definition of a particular resource type (a class in
object- oriented terms). For example, the VISA Instrument
Control resource classes define how to create a resource
to control a particular capability of a device.

resource descriptor

A string, such as a VISA resource descriptor, that
specifies the I/O address of a device.

SCPI

Standard Commands for Programmable Instrumentation: a
standard set of commands, defined by the SCPI
Consortium, to control programmable test and
measurement devices in instrumentation systems.

secondary VISA

A VISA installation that does not install visa32.dll in the
standard VISA location. A secondary VISA installation
names its VISA DLL with a different name (such as
agvisa32.dll) so that it can be accessed programmatically.
The primary VISA will be used by default in VISA
applications. See also “primary VISA”.

session

VISA term for a communication channel. An instance of a
communications path between a software element and a
resource. Every communication channel in VISA is unique.

SICL

Standard Instrument Control Library. SICL is an Agilent-defined API
for instrument I/O. Agilent SICL is one of the IO Libraries installed with
Agilent IO Libraries Suite.
149

150

Glossary
side-by-side

A side- by- side installation allows two vendors'
implementations of VISA to be used on the same
computer. See also “primary VISA” and “secondary VISA”.

SRQ

An IEEE- 488 Service Request. This is an asynchronous
request (an interrupt) from a remote device that requires
service. In GPIB, an SRQ is implemented by asserting the
SRQ line on the GPIB. In VXI, an SRQ is implemented by
sending the Request for Service True event (REQT).

status byte

A byte of information returned from a remote device that
shows the current state and status of the device. If the
device follows IEEE- 488 conventions, bit 6 of the status
byte indicates whether the device is currently requesting
service.

symbolic name

A name corresponding to a single interface. This name
uniquely identifies the interface on this controller. When
there is more than one interface on the controller, each
interface must have a unique symbolic name.

system tray

See “notification area”.

task guide

The information and logic represented in the left pane of the
Connection Expert window. The task guide provides links to actions
and information that help guide you through the most common I/O
configuration tasks.

taskbar notification area

See notification area.
Agilent VISA User’s Guide

Glossary

Agilent VISA User’s Guide
test system

An entire test setup including a controller (often a PC),
instruments, interfaces, software, and any remote
controllers, instruments, and interfaces that are
configured to be used as part of the system.

thread

An operating system object that consists of a flow of
control within a process. A single process may have
multiple threads, each having access to the same data
space within the process. Each thread has its own stack,
and all threads may execute concurrently (either on
multiple processors, or by time- sharing a single
processor).

ViFind32

A console application that uses the viFindRsrc and
viFindNext VISA functions to enumerate all resources
visible to VISA. This application is useful for verifying
that all expected interfaces have been configured by
Connection Expert, and that the expected devices have
been attached. ViFind32 is part of the Agilent IO Libraries
Suite.

virtual instrument

A name given to the grouping of software modules (such
as VISA resources with any associated or required
hardware) to give them the functionality of a traditional
stand- alone instrument. Within VISA, a virtual instrument
is the logical grouping of any of the VISA resources. The
VISA Instrument Control Resources Organizer serves as a
means to group any number of any type of VISA
Instrument Control Resources within a VISA system.
151

152

Glossary
VISA

Virtual Instrument Software Architecture. VISA is a
standard I/O library that allows software from different
vendors to run together on the same platform. Agilent
VISA is part of the Agilent IO Libraries Suite.

VISA address

A resource descriptor that can be used to open a VISA
session.

VISA alias

A string that can be used instead of a resource descriptor
in VISA programs. Using VISA aliases rather than
hard- coded resource descriptors makes your programs
more portable. You can define VISA aliases for your
instruments in Connection Expert.

VISA COM

The VXIplug&play specification for a COM- compliant VISA
I/O library and its implementation. Agilent VISA COM is
part of the Agilent IO Libraries Suite.

VISA Instrument Control Resources

The VISA definition of device- specific resource classes.
VISA Instrument Control Resources include all
VISA- defined device and interface capabilities for direct,
low- level instrument control.

VISA name

The prefix of a VISA address. The VISA name specifies the interface.

VISA resource manager

The part of VISA that manages resources. This management includes
support for opening, closing, and finding resources, setting attributes,
retrieving attributes, and generating events on resources.
Agilent VISA User’s Guide

Glossary

Agilent VISA User’s Guide
VISA resource template

The part of VISA that defines the basic constraints and
interface definition for the creation and use of a VISA
resource. Each VISA resource must derive its interface
from the VISA resource template.

VXI Resource Manager

A software utility that initializes and prepares a VXI
system for use. The VXI Resource Manager is part of the
Agilent IO Libraries Suite.

Windows notification area

See notification area.
153

154

Glossary
Agilent VISA User’s Guide

Index
A
addressing

addressing device sessions, 34
devices, 34

Agilent web site, 12
attributes

setting VXI trigger lines, 127
VXI, 126

B
buffers

formatted I/O, 51

C
callbacks and events, 55, 63
closing device sessions, 38
conversion, formatted I/O, 43

D
declarations file, 31
default resource manager, 32
device sessions

addressing, 34
closing, 38
opening, 32

E
enable events for callback, 66
enable events for queuing, 73
event handler, 66
events

callback, 55, 63
enable for callback, 66
enable for queuing, 73
handlers, 55
hardware triggers, 55
interrupts, 55
Agilent VISA User’s Guide
queuing, 55, 72
SRQs, 55
wait on event, 74

examples
Checking Instrument Errors, 79
Determining Window Mapping, 127
Enabling a Hardware Trigger Event, 67,

74
Example C/C++ Source Code, 15
Exception Events, 82
Exclusive Lock, 87
GPIB-VXI (E1406A) Interface, 98
Installing an Event Handler, 65
MEMACC Resource Program, 120
Opening a Device Session, 133
Opening a Resource Session, 34
Opening a Session, 37
Printing Error Code, 79
Reading a VISA Attribute, 30
Receiving Data From a Session, 49
Searching VXI Interface for

Resources, 40
SRQ Callback, 69
Trigger Callback, 67
Trigger Event Queuing, 75
Using Array Size Modifier, 46
Using Non-Formatted I/O

Functions, 53
Using the Callback Method, 63
Using the GPIB-VXI Interface

(Low-Level) Memory Functions, 110
Using the Precision Modifier, 44
Using the Queuing Method, 73
Using the VXI Interface (High-Level)

Memory Functions, 103
Using the VXI Interface (Low-Level)

Memory Functions, 109
Using viPeek16, 108
VXI (E8491B) Interfaces, 96
F
field width, 43
finding resources, 38
formatted I/O

buffers, 51
conversion, 43
field width, 43
functions, 41

functions
formatted I/O, 41

G
glossary, 143
GPIB interfaces, introduction, 92
GPIB-VXI

attributes, 126
high-level memory functions, 102
low-level memory functions, 106
register programming, 100, 106
setting trigger lines, 127

GPIB-VXI interfaces overview, 97

H
handlers, 55

event, 66
installing, 64
prototype, 66

hardware triggers and events, 55
header file, visa.h, 31
high-level memory functions, 100
high-level memory functions for VXI, 100,

102

I
installing handlers, 64
interrupts and events, 55
155

Index
L
LAN

hardware architecture, 130
interfaces overview, 130

locking, 33, 85
locks

using, 85
low-level memory functions, 106
low-level memory functions for VXI, 106

M
MEMACC attribute descriptions, 122
memory functions, high-level, 100
memory functions, low-level, 106

N
non-formatted I/O

mixing with formatted I/O, 52

O
opening sessions, 32
overview, guide, 8

Q
queuing and events, 55, 72

R
raw I/O, 52
register programming

high-level memory functions, 100
low-level memory functions, 106

resource manager, 32
resource manager session, 32
resources

finding, 38
locking, 85

S
sample code

See also examples
searching for resources, 38
sessions
156
device, 32
opening, 32
resource manager, 32

SRQs, 55
starting the resource manager, 32

T
timeout, 33, 75
trigger lines, 128
triggers and events, 55

U
USB

communicating with instruments using
VISA, 141

interfaces overview, 140

V
VISA

description, 10
visa.h header file, 31
VXI

attributes, 126
high-level memory functions, 102
low-level memory functions, 106
register programming, 100, 106
setting trigger lines, 127

W
wait on event, 74
web site, Agilent, 12
Agilent VISA User’s Guide

	Agilent VISA User’s Guide
	Introduction
	What’s in This Guide?
	VISA Overview
	Using VISA, VISA COM, and SICL
	VISA Support
	VISA Documentation

	Contacting Agilent

	Building a VISA Application in Windows
	Building a VISA Program (C/C++)
	Compiling and Linking VISA Programs (C/C++)
	Linking to VISA Libraries
	Microsoft Visual C++ Version 6.0 Compilers

	Sample VISA Program (C/C++)
	Sample C/C++ Program Source Code
	C/C++ Sample Program Contents

	Building a VISA Program (Visual Basic)
	Visual Basic Programming Considerations
	Required Module for a Visual Basic VISA Program
	Installing the visa32.bas File
	VISA Limitations in Visual Basic
	Format Conversion Commands
	Numeric Arrays
	Strings

	Sample VISA Program (Visual Basic)
	Steps to Running the Program
	Sample Program Source Code
	Sample Program Contents

	Logging Error Messages
	Using the Event Viewer
	Using the Message Viewer
	Using the Debug Window

	Programming with VISA
	VISA Resources and Attributes
	VISA Resources
	VISA Attributes
	Sample: Reading a VISA Attribute

	Using Sessions
	Including the VISA Declarations File (C/C++)
	Adding the visa32.bas File (Visual Basic)
	Opening a Session
	Resource Manager Sessions
	Resource Sessions
	Sample: Opening a Resource Session

	Addressing a Session
	Sample: Opening a Session

	Closing a Session
	Searching for Resources
	Sample: Searching the VXI Interface for Resources

	Sending I/O Commands
	Types of I/O
	Using Formatted I/O
	Formatted I/O Functions
	Formatted I/O Conversion
	Sample: Using Field Width Modifier
	Sample: Using the Precision Modifier
	Sample: Using Array Size Modifier
	Sample: Receiving Data From a Session
	Formatted I/O Buffers
	Sample: Sending and Receiving Formatted I/O

	Using Non-Formatted I/O
	Non-Formatted I/O Functions
	Sample: Using Non-Formatted I/O Functions

	Using Events and Handlers
	Events and Attributes
	Event Notification
	Events that can be Enabled
	Sample: Reading Event Attributes

	Using the Callback Method
	Sample: Using the Callback Method
	Installing Handlers
	Sample: Installing an Event Handler
	Writing the Handler
	Enabling Events
	Sample: Enabling a Hardware Trigger Event
	Sample: Trigger Callback
	Sample: SRQ Callback

	Using the Queuing Method
	Sample: Using the Queuing Method
	Enabling Events
	Sample: Enabling a Hardware Trigger Event
	Wait on the Event
	Sample: Wait on Event for SRQ
	Sample: Trigger Event Queuing

	Trapping Errors
	Trapping Errors
	Sample: Checking for VI_SUCCESS
	Sample: Printing Error Code
	Sample: Checking Instrument Errors

	Exception Events
	Exception Handling Model
	Using the VI_EVENT_EXCEPTION Event
	Sample: Exception Events

	Using Locks
	Lock Functions
	viLock/viUnlock Functions
	VISA Lock Types
	Sample: Exclusive Lock
	Sample: Shared Lock

	Programming via GPIB and VXI
	GPIB and VXI Interfaces Overview
	General Interface Information
	What is an I/O Interface?
	VXI Device Types

	GPIB Interfaces Overview
	Example: GPIB (82350) Interface

	VXI Interfaces Overview
	Example: VXI (E8491B) Interfaces

	GPIB-VXI Interfaces Overview
	Example: GPIB-VXI (E1406A) Interface

	Using High-Level Memory Functions
	Programming the Registers
	High-Level Memory Functions
	Using viIn and viOut
	Using viMoveIn and viMoveOut

	High-Level Memory Functions: Sample Programs
	Sample: Using VXI Interface (High-Level) Memory Functions
	Sample: Using GPIB-VXI Interface (High-Level) Memory Functions

	Using Low-Level Memory Functions
	Programming the Registers
	Low-Level Memory Functions
	Mapping Memory Space
	Reading and Writing to Device Registers
	Sample: Using viPeek16
	Unmapping Memory Space

	Low-Level Memory Functions: Code Samples
	Sample: Using the VXI Interface (Low-Level) Memory Functions
	Sample: Using the GPIB-VXI Interface (Low-Level) Memory Functions

	Using Low/High-Level Memory I/O Methods
	Using Low-Level viPeek/viPoke
	Using High-Level viIn/viOut
	Using High-Level viMoveIn/viMoveOut
	Sample: Using VXI Memory I/O

	Using the Memory Access Resource
	Memory I/O Services
	High-Level Memory I/O Services
	Low-Level Memory I/O Services
	Sample: MEMACC Resource Program

	MEMACC Attribute Descriptions
	Generic MEMACC Attributes
	VXI and GPIB-VXI Specific MEMACC Attributes
	GPIB-VXI Specific MEMACC Attributes
	MEMACC Resource Event Attribute

	Using VXI-Specific Attributes
	Using the Map Address as a Pointer
	VI_ATTR_WIN_ACCESS Settings
	Sample: Determining Window Mapping

	Setting the VXI Trigger Line

	Programming via LAN
	LAN and Remote Interfaces Overview
	Direct LAN Connection versus Remote IO Server/Client Connection
	Remote IO Server/Client Architecture
	Client/Server Model
	Gateway Operation

	Addressing LAN-Connected Devices
	Using the TCPIP Interface Type for LAN Access
	Addressing a Session Using the TCPIP Interface Type

	Using a Remote Interface for LAN Access
	Remote Serial Interface (ASRL VISA LAN Client)
	Remote GPIB Interface (GPIB VISA LAN Client)
	Remote USB Interface (USB VISA LAN Client)
	Addressing a Session Using a Remote Interface

	Programming via USB
	USB Interfaces Overview
	Communicating with a USB Instrument Using VISA

	Glossary
	address
	alias
	API
	attribute
	bus error
	bus error handler
	commander
	commander session
	communication channel
	Connection Expert
	controller
	device
	device driver
	device session
	direct I/O
	driver
	explorer view
	handler
	instrument
	instrument driver
	Interactive IO
	interface
	interface driver
	interface session
	interrupt
	IO Libraries
	lock
	logical unit
	mapping
	non-controller role
	notification area
	operation
	primary VISA
	process
	refresh
	register
	resource (or resource instance)
	resource class
	resource descriptor
	SCPI
	secondary VISA
	session
	SICL
	side-by-side
	SRQ
	status byte
	symbolic name
	system tray
	task guide
	taskbar notification area
	test system
	thread
	ViFind32
	virtual instrument
	VISA
	VISA address
	VISA alias
	VISA COM
	VISA Instrument Control Resources
	VISA resource manager
	VISA resource template
	VXI Resource Manager
	Windows notification area

	Index

